
Cryptica Social Media Analysis
Application

NEA Document

Arthur Robertson

Centre Number: Redacted
Candidate Number: Redacted

Cryptica Social Media Analysis Application NEA

Contents

ANALYSIS 6
DESCRIPTION OF PROJECT . 6
BACKGROUND ANALYSIS . 6
INTERVIEW WITH CLIENT . 8
CURRENT SYSTEM . 10
PROPOSED SYSTEM . 12
OBJECTIVES . 13
OBJECTIVES COMPLEXITY AND LIMITATIONS . 16

Security . 16
API Data Resolution . 16
Neural Networks . 16
User Interface Design . 17
News Article Scraping . 17

AUTHENTICATION . 17
HTTP Basic Authentication . 17
HTTP Digest Authentication . 18
Session Based Authentication . 19
Token Based Authentication . 19
OAuth . 20
Conclusion . 20

USER IDENTIFICATION . 21
TECHNICAL SOLUTIONS . 21

Next.js . 21
FastAPI . 22
TensorFlow and Neural Networks . 23
Twint . 24
Binance API . 24
Argon2 . 24
PostgreSQL . 25
TailwindCSS . 25

DESIGN 25
OVERALL DESIGN . 25

Arthur Robertson 2

Cryptica Social Media Analysis Application NEA

FRONTEND PAGES . 26
API ROUTES . 28
INPUT PROCESS STORAGE OUTPUT CHART . 31
FORM STRUCTURE . 33

Login Form . 33
Registration Form . 33

DATA DICTIONARY . 33
ENTITY RELATIONSHIP DIAGRAM . 37
SQL QUERIES PLAN . 38
CLASS DIAGRAMS . 40
USER INTERFACE . 45
COMMON SECURITY VULNERABILITIES AND MITIGATION 48

SQL Injection . 49
Cross Site Scripting . 49
Broken Access Control . 50

SECURITY MEASURES . 50
JSON Web Tokens and RSA . 50
JWT . 52
Authentication Walls . 53
API Server Security . 54
Testing Phase . 54
Additional Possible Measures . 55

BACKUPS . 56
SENTIMENT ANALYSIS . 57

Algorithm . 58
Dataset . 58
Training . 59
Exporting . 59

SERVER HARDWARE . 59
Client Frontend . 59
API Server and Database . 60

ALGORITHM DESIGN . 60
Sentiment Analysis . 60
Authentication . 62
RSA (Rivest–Shamir–Adleman) Key Generator 64

Arthur Robertson 3

Cryptica Social Media Analysis Application NEA

Base64 . 69
TEST PLAN . 72

IMPLEMENTATION 73
TABLE OF FILES . 73
ADVANCED TECHNIQUES . 78
ANNOTATED PROGRAM FILES . 79

api/main.py . 79
api/api/auth.py . 81
api/api/crypto.py . 84
api/api/news.py . 85
api/api/twitter.py . 87
api/api/users.py . 89
api/core/auth.py . 91
api/core/binance.py . 93
api/core/security.py . 94
api/db/crud.py . 98
api/db/schemas.py . 107
api/utils/base64.py . 108
api/utils/sentiment.py . 110
server/rsa/keygen.py . 111
server/news/update.py . 113
server/sentiment/train.py . 115
client/pages/account/index.js . 118
client/pages/tweet-analysis/index.js . 121
client/pages/coin/index.js . 129
client/page/coin/[id].js . 132
client/page/account-analysis/index.js . 138
client/pages/login/index.js . 143
client/page/register/index.js . 147
client/pages/news/index.js . 152
client/pages/news/[id].js . 156
client/pages/_app.js . 160
client/services/auth.js . 160
component/comments.js . 163

Arthur Robertson 4

Cryptica Social Media Analysis Application NEA

component/loading.js . 164
component/layout/layout.js . 165
component/layout/navbar/ticker.js . 166
component/layout/account.js . 168
component/coin/graph.js . 169
component/analysis/tweet.js . 171
components/analysis/search.js . 176
components/analysis/ohcl.js . 178

TESTING 181
CLIENT APPLICATION TESTING . 181
SERVER CODE TESTING . 187

RSA Testing . 190
Miller_Rabin Function Testing . 191
Sentiment Analysis Model Testing . 193
JSON Web Token . 194
Base64 . 196

API TESTING . 197
Evidence . 207
XSS and SQL Injection Testing . 226

EVALUATION 228
OBJECTIVE COMPLETION . 228
FEEDBACK FROM CLIENT . 232
POSSIBLE EXTENSIONS . 232

Arthur Robertson 5

Cryptica Social Media Analysis Application NEA

ANALYSIS

DESCRIPTION OF PROJECT

For my project I decided that I want to build a modern secure web application that follows
good security practices. I have decided to find a client to develop an application for that will
allow me to develop an authentication system alongside their desired functionality. I have
some experience in searching for website vulnerabilities, which I will be putting to use when
creating and testing my application.

BACKGROUND ANALYSIS

My client is an IT professional who works for a company maintaining their IT systems. My
client keeps his finances in order, and puts part of his salary into a variety of investments, such
as stocks and shares. My client has a small portion of his investments in Cryptocurrencies,
however he would like to expand on his investments and increase it’s stake.

Cryptocurrencies are a new asset class that has seen a dramatic rise in popularity over the
past year. They are attractive to retail investors as they typically offer high returns with high
risk. The cryptocurrency markets consist of hundreds of coins, that each perform differently
and have different values and purposes. They tend to be extremely volatile, seeing huge gains
and losses in very short periods of time. The market also tends to be influenced by politics
and real life events, and are surrounded by controversy.

Arthur Robertson 6

Cryptica Social Media Analysis Application NEA

Figure 1: Bitcoin’s price over the last 5 years. Source: Google Finance

My client is a retail investor, and he primarily bases his investment decisions based on his
own research. His research primarily consists of analysing news articles, and social media
sentiment. My client has noticed that high profile celebrities such as Donald Trump and Elon
Musk can have a large impact on the price of assets based on a short social media post. In
fact, Elon Musk has previously got in trouble in the past with the SEC for tweeting regarding
Tesla’s stock. Cryptocurrencies however are a very unregulated market, and Elon Musk has
tweeted about them several times with no consequences.

Arthur Robertson 7

Cryptica Social Media Analysis Application NEA

Figure 2: Graph I generated in Python showing the effect of a Tweet on the price of Dogecoin,
a cryptocurrency. The blue candlestick on the financial chart shows the time of tweet.

My client wishes for a web application to be able to analyse the effect certain social media
posts have on the price of cryptocurrencies, with a program that generates graph such as the
one above to show the impact.

With my other clients investments, he keeps informed on current events and news by read-
ing newspapers such as the Financial Times, which offer a range of high quality articles on
most things affecting the stock market. Cryptocurrencies however do not typically feature
frequently in publications like the Financial Times, meaning that my client has to look else-
where for news related to cryptocurrencies. He would also like to be able to see a collection of
Cryptocurrency related news articles in one place, saving him from searching across multiple
publications.

INTERVIEW WITH CLIENT

Me: What functionality are you looking for with this project?

Client: I would like an application that allows me to perform my analysis all in one spot.
Currently, my analysis on social media on the cryptocurrency markets is not good, and is

Arthur Robertson 8

Cryptica Social Media Analysis Application NEA

not helping me make informed trades. I would like a tool that allows me to gain a quick
overview on social media opinion on cryptocurrencies.

Me: What do you normally trade on the cryptocurrency markets?

Client: I normally trade a variety of assets, including Bitcoin, Ethereum, and some other
smaller “alt coins” such as Dogecoin.. I trade on a platform called ‘Binance’.

Me: How do you base your decisions on what to trade?

Client: I make my trades based on overall sentiment on certain assets. I like to keep an
eye out for what assets high profile celebrities are mentioning. I often find that they can
have great influence on the price of some cryptocurrencies. I normally search on Twitter
for certain users and try and find and analyse how the price of certain things change after
they tweet. I like to read articles from news publications as well, especially articles on
cryptocurrency though they rarely appear.

Me: Are there any problems with your current trading method?

Client: Yes. Often, by the time I find about certain coins and see them on social media,
they have already spiked in price and it is too late for me to invest in them. I also don’t
always know who I should pay attention to on twitter, certain users such as Elon Musk
tend to be very influential with the markets, but I need a way to verify this. There is a
very high quantity of spam on Twitter, and I need to be careful who I pay attention to and
who I ignore. In addition as I mentioned before, I like to get my news from news sites
and papers. However, I can never seem to find articles about cryptocurrency which is
annoying.

Me: What tools are you looking for to help you make informed trading decisions?

Client: I would like a tool where I can analyse a user’s tweets, and check for mentions
of cryptocurrencies. I would then like to be able to analyse and work out if said user’s
tweets have any influence on the price - this will help me make an informed decision as
to whether to follow the Twitter user’s advice on coins.

I also currently struggle to find relevant news articles related to cryptocurrency. I would
like to be able to access articles from multiple sources in one place, so I can view them at

Arthur Robertson 9

Cryptica Social Media Analysis Application NEA

a glance and assess overall sentiment.

Me: What platform do you normally trade on?

Client: I normally trade and perform all my analysis on my desktop computer. I wish
for the application to be accessible through a website interface, so I can access it from
wherever I am.

Me: What is important to you when visiting a website?

Client: For me, speed and performance is very important. If a website takes too long to
load, I will normally not bother waiting and just close it. The website you make should be
as fast as possible to load and also responsive.

Me: Are there any other features you might like?

Client: I also have many friends in the field. I would like the web application to support
multiple users signup up and creating accounts. I would then like to be able to comment
on articles that feature on the website, and also view other users comments. This will
allow me and my friends to communicate and speculate together.

I would also like to be able to view some basic information about the top coins from the
website, such as the price and how they are performing.

CURRENT SYSTEM

After my interview with my client, I made a flowchart of how he currently uses Twitter and
news publications to research cryptocurrencies to invest in.

Arthur Robertson 10

Cryptica Social Media Analysis Application NEA

Figure 3: Flowchart of my clients process

Arthur Robertson 11

Cryptica Social Media Analysis Application NEA

As you can see, it is rather inefficient and involves him manually going through many tweets
and articles, sometimes with no results. My proposed system should aim to resolve this
inefficiency, and should save him a lot of time.

PROPOSED SYSTEM

Following the interview with my client, I created a proposal to send to him that aimed to
satisfy his requests. You can see the proposal below:

Cryptica Social Media Analysis Application Proposal

I am proposing a tool called Cryptica to help you meet your analysis needs. Cryptica will be a
website application that consists of several main parts.

The main part of the application will be 2 separate analysis pages. These will both consist of
an input field for you to input any user’s twitter handle. Upon entering a user’s handle, one of
the pages will display a list of their tweets mentioning Cryptocurrency. Then, you will be able
to click on any of the tweets which will bring up further analysis, as well as a graph showing
the impact the tweet has on the cryptocurrency market. It will also display the predicted
sentiment of the tweet - whether or not the content of the tweet is positive or negative. You
will be able to use this to make an informed decision on whether a user has influence in the
cryptocurrency space, and whether to follow what they are saying or not.

The second analysis pages will be for general analysis of a Twitter user. After entering a user’s
handle, you will be able to view a collection of graph and metrics about the user. This will
include metrics such as what time they are typically active on Twitter, as well as what device
they typically use Twitter on. This will allow you to gain an insight into their tweeting habits,
further aiding your analysis.

Cryptica will have support for account authentication - you and your friends will be able to
create accounts and stay logged in between sessions, meaning you can have direct control
over who can use your tool. To use either of the analysis pages, you will be required to login.
This login system means you can have fine access control over who can use your tool.

Next, the news section. Cryptica will store excerpts of news articles from many high profile
news sources, and will allow you to easily view headlines relevant to the cryptocurrency
market from many sources in one place. There will be a main news page that displays a title
and preview of all the news articles in the database. You will be able to click on any of them

Arthur Robertson 12

Cryptica Social Media Analysis Application NEA

and it will take you to a page dedicated to the article. On this page, you will be able to view
the full details about the article, and click through to visit the original article. You will also be
able to post a comment using your account on the article, and view other user’s comments.

Finally, I will include a page that displays a summary of the cryptocurrency markets and the
top coins. You will be able to see a list of the top coins by market cap, and click on any of them
to view a graph of their price. This will let you view at a quick glance how certain coins are
performing, as well as some key metrics with the coin.

This will be implemented using a client application that interacts and works with an API server.
This can be hosted on a number of free hosting services at no cost or difficulty to you.

Please get back to me and let me know what you think, and if you would like any changes. -
Arthur

I also attached a copy of the following flowchart, highlighting how my application will work:

Figure 4: Flowchart showing how the user will interact with the program

My client responded approving the proposal, and requested no changes.

OBJECTIVES

1. There should be a publicly accessible web application that allows the client to access
the etc

Arthur Robertson 13

Cryptica Social Media Analysis Application NEA

2. There should be two main components to the web application, a front end client and a
back end API. The front end client should interact with the API and should be what the
user interacts with. The API should handle all the fetching/processing of data, as well as
any other functionality such as database management with CRUD.

3. The API should be capable of securely authentication users for the front end app. My
client has specified that he would like anyone to be able to login and register for an
account, so that he can share the application with his like-minded friends. Therefore,
the API should be capable of handling multiple concurrent users having accounts, and
should be able to authenticate and distinguish between them.

4. The API should interact with the front end client application to ensure that users remain
authenticated between sessions. Users should be able to login and then have to not
enter their password again for a reasonable amount of time. This should be done
using JSON Web Tokens. These should be created and signed by the API server using
cryptography, and stored in the browser storage.

5. The RSA algorithm should be used to sign the JSON Web Tokens. To do this, I will need
to have an RSA key. Part of the program should be able to create RSA keys for use in this
functionality.

6. The users data and passwords should securely be stored in a database. A secure, modern
password hashing algorithm should be used, that uses hash salting to protect against
attacks.

7. The API should be capable of fetching and processing a specified users tweets from
Twitter’s API. It should be able to perform sentiment analysis on the tweet’s content,
and return the information to the user.

8. The API should have a database table that stores a collection of recent relevant news
articles. The frontend client should then be able to display these articles for easy access.
The news articles should ideally come from a variety of sources through web scraping.
Only a brief excerpt of the article needs to be stored and displayed - to read the full
article the users should be directed to the original site. Alternatively, the news articles
should be fetched from an existing third party API that offers a service.

9. There should be a page that displays a list of the top 50 coins by market cap. It should
display live data showing the price and other statistics about the coins. You should be
able to click on any of the coins and it should take you to another page, showing further
information about the coins performance. This should include a graph of the coins
performance over time, and a brief description of the coin. In addition, on the specific
coin page it should show a list of relevant articles stored in the database relating to the

Arthur Robertson 14

Cryptica Social Media Analysis Application NEA

coin. If no such articles are found, it should not display any.
10. Logged in users should be able to comment on any of the news articles, and anyone

should be able to view said comments. Admin accounts should be able to delete any
users comments, and users should be able to delete their own comments. The API
should be able to distinguish between users and administrators.

11. There should be a basic profile functionality. Users should be able to view a users profile,
and view information such as all their historic comments on articles.

12. The application should be secure against malicious parties. It should not be vulnerable
to common flaws such as SQL or XSS (cross site scripting) injection, and users should
not be able to bypass authentication methods implemented, e.g. viewing pages that
are behind an authentication wall.

13. The application should contain analysis page for users tweets, that allows someone to
input a users Twitter username. Then, they should be able to view a list of tweets, and
should be able to see information on how the tweet has impacted the cryptocurrency
market. It should display a candlestick graph that displays the price of the relevant
cryptocurrency before and after the tweet. This page should also show the predicted
sentiment of the tweet - whether the tweets content is positive or negative.

14. The analysis page should also offer some basic analysis on the user’s Twitter account as
a whole. It should be able to produce a heat map of the time the user is typically active
on Twitter, based on the time the user has tweeted previously. It should also display
what device the user uses in the form of a pie chart, for example if the user is tweeting
from an iPhone or from a computer.

15. The tweets analysis page should be able to perform some basic sentiment analysis on
the user’s tweets contents. It should attempt to estimate whether a tweet is positive or
negative, and this should then be displayed to the user. For this, a neural network should
be implemented using a Python deep learning library such as TensorFlow. The neural
network should aim to have an accuracy of around 75%+. This objective is ambitious
and primarily an extension that I should complete if I have enough time. Failing that, it
should use an existing third party API for analysing sentiment, rather than creating my
own sentiment model.

16. The website should be fast to respond. This can be measured using Google’s Lighthouse
page score metrics, which is a service that returns a value on how fast the page performs.
I want to aim for a score of 90-100, which is considered ‘excellent’.

Arthur Robertson 15

Cryptica Social Media Analysis Application NEA

OBJECTIVES COMPLEXITY AND LIMITATIONS

My objectives are of high complexity, and will require learning and working with many dif-
ferent elements. It will require me to use several different APIs, including Twitter’s API and a
Cryptocurrency price API.

Security

Security is a big part and focus of my project. I will attempt to ensure my program is secure
against all likely attacks. This is very difficult however, as the field of cyber security is constantly
changing and evolving. This means that there are constantly new attack methods being
developed, making it near impossible to claim an application is “100% secure”. Instead, I will
just attempt to make my program as secure as feasible given my limited time and expertise.

API Data Resolution

As part of my project I will be processing data from several third party APIs, including Twitter’s
API and a Cryptocurrency API. These APIs normally impose restrictions on the quality of data
freely available. I will be limited by what data I can freely access.

With my project I will be required to process very high quantities of data frequently. It will be
important that my code is efficient and does not have any bottlenecks. This will add a high
level of complexity.

Neural Networks

Neural Networks are a complicated topic heavy on maths. As part of my project I will attempt
to understand and implement several complex machine learning algorithms. As mentioned
before I aim to produce a sentiment analysis model capable of classifying sentiment with an
accuracy of above 75%. However, neural networks are a new field to me so I must accept that
this might not be possible with my limited time. If I fail to produce a working model, I will
instead resort to using a third party API to perform sentiment analysis, which should achieve
the same end result.

Arthur Robertson 16

Cryptica Social Media Analysis Application NEA

User Interface Design

Whilst the User Interface is important, creating one with CSS is difficult and time consuming.
I shall instead be focusing the majority of my time with building functionality to my appli-
cation. I shall also be using a CSS utility library called Tailwind, which shall help speed up
development.

News Article Scraping

Despite a lot of websites looking visually similar, they are all composed of very different HTML.
This poses a challenge when attempting to scrape websites for news articles, as it is hard to
make a program that is capable of scraping articles from a large variety of sources. For this
reason I will likely be using an external News API instead of scraping. I will likely be limited by
what API is freely available.

AUTHENTICATION

Authentication will be a large part of my project. Authentication is the process of verifying an
identity, and ensuring that a user interacting with my system is who they claim to be. Once a
user has authenticated with my server initially, I need a way to keep them logged in and verify
that the user is who they claim to be, without them having to enter their password each time.
I have researched several of the most popular authentication methods and compared their
pros and cons to help me decide on which authentication method to implement. You can see
my research and comparisons below.

HTTP Basic Authentication

HTTP Basic Authentication is the simplest form of authentication that is built into the
HTTP protocol. It involves sending a header containing login credentials with each request
made to a website. The header will look like the following: Authorization: Basic
dXNlcm5hbWU6cGFzc3dvcmQ=. dXNlcm5hbWU6cGFzc3dvcmQ= is username:password
base64 encoded to form a string that can be sent with HTTP requests. The receiving server
will then compare the username and password value sent in the request with a value in a
database.

Arthur Robertson 17

Cryptica Social Media Analysis Application NEA

This authentication method is stateless, so the username and password must be supplied
with each request to the server.

Pros

• Stateless
• Easy to implement
• Requires little computing power, fast
• Supported by most browsers

Cons

• Credentials are sent unencrypted to the server, therefore HTTPS essential
• Hard to log users out / invalidate credentials
• Credentials must be sent with every request
• Requires storing passwords in plaintext

HTTP Digest Authentication

HTTP Digest Authentication is a variant of HTTP Basic Authentication that addresses the lack
of encryption when sending the password. Instead of sending the base64 encoded password
in cleartext, it is hashed before being sent to the server. This means that if it is encrypted, it is
much harder to extract the original password.

Pros

• Same as HTTP Basic Authentication
• Passwords sent encrypted

Cons

• Credentials must be sent with every request
• Hard to log users out / invalidate credentials
• Password hashing algorithm must be ran on the client and server, limiting options

Arthur Robertson 18

Cryptica Social Media Analysis Application NEA

Session Based Authentication

With session based authentication, the user’s authentication state is stored on the server
typically in some form of database. Rather than requiring the user to supply a username and
password with each request, after logging in once the server creates a session object. This
can be then stored in a database, and a session ID can be sent back to the client to store in the
browser. This session ID is then sent with all future requests, and is then verified by the server
upon receiving a request.

Pros

• Only requires sending credentials once
• Widely supported with most popular web frameworks
• Allows invalidation of sessions - can remove session from database and force user to

log out

Cons

• Stateful - requires implementing a session database. The server needs to keep track of
all sessions generated, which requires additional computing power

• If a user’s session ID is intercepted and stolen, an attacker could perform malicious acts
on behalf of the user

Token Based Authentication

Token based authentication has some similarities with session based authentication, but
differs in the use of a stateful database. With token based authentication, upon valid creden-
tials being supplied to the server, the server generates and signs a token. This token is then
stored by the client and sent with subsequent requests. Then, the server can simply verify the
tokens signature to determine if it is valid. This means the server does not need to keep track
of tokens generated.

Pros

• Stateless - the server does not need to keep track of tokens generated
• Low overhead, with little computing power needed

Arthur Robertson 19

Cryptica Social Media Analysis Application NEA

• Rising popularity over recent years, with many companies adopting their use. Lots of
documentation online

• Tokens are compact and typically small in size

Cons

• Difficult to invalidate tokens, tokens are only invalid when they expire
• Token stored in cookies/browser storage, which can sometimes be exploited by attackers

OAuth

OAuth/OAuth2/OpenID are a form of single sign-on (SSO) that allows users to authenticate
using an existing account from applications such as Google, Facebook and Apple. They allow
you to create accounts and login to new websites using your existing account on another
service. This means there is no need to create or store new passwords, and the other service
handles all credential storage. OAuth is very popular, and many millions of people use it on a
daily basis. You will typically see an option when creating an account to “Login with Google”
or another service.

Pros

• Improved Security
• No need to store usernames / passwords
• Easy experience for the user and fast
• Uses external applications existing authentication infrastructure

Cons

• The application is dependent on external services
• Requires the user to have an account on a configured service
• Difficult to implement, involves working with many different services

Conclusion

After my research, I have decided to implemented a form of Token Based Authentication with
my application, specifically JSON Web Tokens. I have researched JSON Web Tokens further,

Arthur Robertson 20

Cryptica Social Media Analysis Application NEA

and you can read further about them in the design section of this document.

USER IDENTIFICATION

My client has specified that he would like other users to be able to access and use the appli-
cation alongside him. He however is the main user and will have admin privileges over the
system, allowing him to moderate and maintain the application.

The secondary users will be other likeminded retail investors who use social media analysis to
inform their cryptocurrency trading decisions. The typical user is tech savvy, and familiar with
web applications like this. That being said, the program will need a intuitive user interface to
allow new users to navigate through the application and use the tools. Ideally the application
should function as a hub for social media cryptocurrency analysis. There will be a social
aspect as well, with users able to create accounts and comment on news articles.

This creates its own set of problems, with moderation required. My client as mentioned before
will have admin privileges allowing him to manage comments and users. In addition there
will be a basic comment filter in place, that attempts to filter out inappropriate comments
from being published.

There will be a guide on the homepage that will inform users how to use the application. This
will be an easy way to help users understand how the program works, and what it does.

TECHNICAL SOLUTIONS

Next.js

Next.js is what I am going to be using to build my frontend application. Next.js is a JavaScript
framework built upon React for developing web applications. React is one of the most widely
adopted frameworks. According to Statista, React is used by over 40% of website developers
worldwide. Next.js is also incredibly popular, with it being downloaded over 2.3 million times
each week (source NPM). Next.js is a full stack framework, and is capable of handling both the
front and backend of an application. I will primarily be using it for the front end, but it is useful
having the option of using it for any backend functionality if needed. Next.js is incredibly
flexible, and has an excellent developer experience. The majority of a Next.js application
consists of components. Components are basic functions that return JSX. JSX is a special

Arthur Robertson 21

Cryptica Social Media Analysis Application NEA

syntax that looks like HTML, but can also contain JavaScript code. Components are then
rendered on the page by either the client or the server, and turned into HTML. Next.js is
incredibly fast, and can render components before hand on the server. This helps result in
a seamless user experience with no loading times. In addition, rendering components on
the server beforehand is excellent for Search Engine Optimisation (SEO), which is important
when considering page rankings on search engines such as Google. Next.js also has a huge
developer community, which provides excellent documentation, guides, and third party
module extensions.

FastAPI

For my backend API, I chose to use a Python powered server. This is because I am experienced
with using Python for data handling and processing, which will be a large part of my API server.
Python is also very suited towards machine learning and artificial intellegence which will
feature in my project. Python has a variety of web server modules available, however for my
project I am choosing to use a Python module called FastAPI. My primary reason for choosing
FastAPI is it’s performance. It is a lot faster than other Python alternatives, such as Flask and
Django, as seen in the table below.

Figure 5: Source: https://christophergs.com/python/2021/06/16/python-flask-fastapi/

FastAPI is also lightweight, and unlike some of the other libraries does not come with lots of

Arthur Robertson 22

https://christophergs.com/python/2021/06/16/python-flask-fastapi/

Cryptica Social Media Analysis Application NEA

features I do not need. This will all help to keep my application fast, and performance high.
FastAPI also has very similar syntax to Flask, another Python module that I have experience
with. This should help ensure an easy development experience.

TensorFlow and Neural Networks

TensorFlow is a Python Library that can be used to create Deep Learning models, created by
Google. TensorFlow has extensive documentation, and many abstraction layers, meaning it
is friendly for beginners to develop with. I plan on using TensorFlow to create a sentiment
analysis classifier, to use on tweets to calculate how positive or negative the content is. Ten-
sorFlow offers many several corpuses which will be suited for my project, including a library
of 50,000 IMDB reviews categorised by rating. This will allow me to use the reviews to train a
model to identify positive and negative text, which will be applied to my API.

Neural Networks are a type of machine learning algorithm loosely modelled on the human
brain. They allow us to identify and classify data and patterns based on raw input. They
consist of nodes, with typically an input layer, then one or more hidden layers, followed by
an output layer. Each node connects to other nodes, and has a specified weight, bias and
threshold. If the output of a node is above the threshold, the node is activated and data is
sent to the next layer. Neural networks improve their accuracy over time by using training
data to learn and fine tune their parameters. Once trained to a suitable level, they are able to
consistently classify data at a quick rate.

Figure 6: Diagram of a very basic neural network, from IBM’s website.

Arthur Robertson 23

Cryptica Social Media Analysis Application NEA

I have also decided that my project will be using a Recurrent Neural Network model. Recurrent
neural networks are a type of neural network that uses sequential data. They utilise training
data to learn, but unlike a typical neural network they have “memory”, as they can take
information from prior inputs to change the input and output. This means that the output is
influenced by the order of the inputs

Twint

Twint is a Python library for fetching data from Twitter without using it’s API. Twitter has
it’s own API that you can register for an account for, however it imposes strict limitations
that made it unsuited towards my project. Twitter’s API does not allow you to fetch over a
certain amount of tweets, and has harsh rate limitations preventing you from accessing too
many tweets in a short period of time. My project relies on fetching a large quantity of tweets
frequently, so I decided to use Twint instead. Twint is a library that fetches tweets by scraping
from twitters website directly, as if it was a user viewing Twitter with a browser. This allows
for a much quicker access to more data, and for a much better experience. Twint is open
source, however is rather poorly maintained. In my testing, I experienced a variety of bugs
and flaws with the package, stopping me from accessing the data that I required. However, I
have created a fork of the package which I have modified to fix the bugs I encountered, fixing
the package for myself.

Binance API

I am choosing to use Binance’s API to get Cryptocurrency data. According to coinranking.com,
Binance is the most popular Cryptocurrency exchange, with 24 hour trade volumes typically
reaching almost 10 billion dollars. Binance also lists and offers data on a very large number of
markets, at time of writing being 1229. This will allow me to access a very vast quantity of
data. In addition, Binance’s API for accessing data is free and offers generous rate limiting.

Argon2

Argon2 is a modern GPU resistant password hashing algorithm. It offers much better cracking
resistance than other popular password hashing algorithms such as BCrypt, PBKDF2, and
SCrypt. Argon2 is considered one of the best available in the industry, and is recommended

Arthur Robertson 24

Cryptica Social Media Analysis Application NEA

over other algorithms. It was selected as the winner of the Password Hashing Competition
in July 2015, and is released under a Creative Commons License. It also has paramaters that
allow you to configure the execution time, memory required, and degree of parallelism of the
algorithm.

PostgreSQL

When choosing a database, I chose to use PostgreSQL. PostgreSQL is a highly stable database
management system that is over 20 years old. PostgreSQL has many performance optimisa-
tions ensuring it is fast, and is a popular choice in enterprise applications. It is open source,
and has integrations for most popular programming languages, including Python which is
what I am using for my API.

TailwindCSS

TailwindCSS is a CSS Utility Library, which allows the use of utility CSS classes to rapidly build
interfaces. I will be using it to save time when working on the user interface. Instead of needing
to create my own CSS classes, it will allow me to use their pre defined utility classes within
HTML class tags. TailwindCSS also supports custom theming; this will allow me to define a
colour theme which can be changed at any point. This will let me update the colour theme
across the entire site by just changing one variable, instead of updating each HTML class name
manually.

DESIGN

OVERALL DESIGN

The program will consist of two main parts, a client website and an API server. The client
server will interact with the API server to process and handle data and requests. The API server
will connect many different APIs and Database Tables to the client. The table below highlights
how the different parts could interact with each other.

Arthur Robertson 25

Cryptica Social Media Analysis Application NEA

Figure 7: Diagram showing how the different parts could interact with eachother

FRONTEND PAGES

Below is a table containing a list of planned pages in the client frontend, and a description of
what the function of each one is:

Page URL Slug Purpose

Homepage / This will be the page the user is greeted with upon first
visiting the site. It should contain a brief description of how
the site works and what it does, and should contain a set of
frequently asked questions.

News /news This page should contain a list of news articles stored in the
database. Users should be able to click on any of the articles
which should take them to the articles page.

Arthur Robertson 26

Cryptica Social Media Analysis Application NEA

Page URL Slug Purpose

News Article /news/[id] This page will display the full details stored about an article. It
will also have a comment field, that allows logged in users to
comment and view other comments on the article. This page
should also contain a link to the original article, so the user
can refer to the site the article origins from if desired. Clicking
on a user in the comment section should redirect the user to
their profile page.

Coins /coin This page should display a table containing the top 50
cryptocurrencies ordered by market cap. The table should
contain some details about the coin, such as the price and the
24hour change. It should also display a picture of the coin
symbol. Clicking on any of the coins in the table should take
you to a page dedicated to the coin.

Coin /coin/[name] This page should show some details about the specific coin.
This should include a graph of the coin’s price in the past year,
as well as other statistics. Ideally this page should also have a
description of the coin, if available. The page should also
have a sidebar that contains links to any articles relevant to
the coin stored in the database.

Login /login This page should contain a form enabling the user to login to
the website. Clicking login should send a request to the API
server which should verify the users password, and then
redirect them to their account page. This page should not be
accessible to logged in users.

Register /register The register page should offer users the ability to create an
account. It should contain a form that asks for an email,
name, and password. There should be a password
requirement that ensures the inputted password is secure.
Pressing register should send a request to the API that should
attempt to register and sign in the user. This page should not
be accessible to logged in users.

Arthur Robertson 27

Cryptica Social Media Analysis Application NEA

Page URL Slug Purpose

Analysis /analysis This page should contain an input field for the user to enter a
twitter handle. Then pressing submit should send a request
to the API server, which will return a list of tweets that should
be displayed on the page. Then, the user should be able to
click on any of the tweets which should bring up a graph and
some analytics on the tweet, showing the impact it had on
the cryptocurrency market. This page should only be
accessible to logged in users.

Profile /users/[id] This page should act like a publicly accessible profile page. It
should contain a list of comments the user has published on
any of the news articles, and a link to each of them. User
should be logged in to view this page.

Account /account The account page should only be accessible to logged in users.
It should display some basic information about the logged in
user, such as their name and email. It should also contain a
button that enables them to logout.

API ROUTES

Below is a table containing a list of planned API routes, and a description of what the function
of each one is:

Route

HTTP
Meth-
ods Purpose Authentication

/api/hello GET Testing API route useful to verify that
the server is running. Should always
return “Hello World”.

None

/api/users/ GET Should return a list of users from the
database

Admin Only

Arthur Robertson 28

Cryptica Social Media Analysis Application NEA

Route

HTTP
Meth-
ods Purpose Authentication

/api/users/ POST Creates a user from the data supplied
with the POST request

Admin Only

/api/users/{ID} GET Should return the specified user’s
details

Admin Only

/api/users/{ID} PUT Allows modifying the specified user by
providing new details in the PUT
request

Admin Only

/api/users/{ID} DELETE Should delete the user specified from
the database

Admin Only

/api/users/count GET Should return a count of the number
of users

Admin Only

/api/users/admin GET Should return a list of administrator
users

Admin Only

/api/users/{ID}/profile GET Should return a list of comments from
the specified user

Logged in Users
Only

/api/auth/login POST This is responsible for logging in a user.
Should return a JSON Web Token if the
supplied authentication details are
correct. If the supplied details are
incorrect should return an error

None

/api/auth/register POST This should be for creating accounts.
This should take the supplied POST
data and attempt to create an account
if one with matching details does not
already exist. It should also return a
JSON Web Token if the account has
been created successfully, if not an
error.

None

Arthur Robertson 29

Cryptica Social Media Analysis Application NEA

Route

HTTP
Meth-
ods Purpose Authentication

/api/auth/me GET This should return a status 200 if the
user is successfully logged in. If not, it
should return an error. This is used to
check if a user is logged in.

Logged in Users
Only

/api/auth/edit PUT This should allow a user to update
their own account by supplying the
PUT request with new data.

Own User Only

/api/news GET This should return a list of the news
articles in the database ordered by
date. It should not return the full
articles, just what is needed for the
news index page.

None

/api/news POST This should allow the creation of new
articles through POST request data.

Admin Only

/api/news/comments GET This should return a list of all the
comments in the database.

Admin Only

/api/news/{ID} GET This should return the full details
about a specified news article, used by
the client to display.

None

/api/news/{ID}/comments GET This should display a list of comments
on the specified article, ordered by
date.

None

/api/news/{ID}/comments POST This should allow the creation of new
comments, by supplying the comment
content in the POST data.

Logged in Users
Only

/api/news/{ID}/comment
s/{COMMENT_ID}

PUT This should allow the user to edit their
comment by supplying new data in
the PUT request. Users should only be
able to modify their own comments.

Author/Admin
Only

Arthur Robertson 30

Cryptica Social Media Analysis Application NEA

Route

HTTP
Meth-
ods Purpose Authentication

/api/news/{ID}comments
/{COMMENT_ID}

DELETE This should delete the specified
comment on the specified article.
Only the author of the comment or an
admin should be able to delete a
comment.

Author/Admin
Only

/api/news/search POST This should search the database for
news using paramaters supplied in the
POST request, and return any results
as a list.

None

/api/twitter/search POST This should cause the API to return a
list of tweets for a user specified in the
POST request, from Twitter’s API.

Logged in Users
Only

/api/crypto/{TICKER}/{TIME}GET This should return a set of price data
for a specified cryptocurrency at a
specified time. It should return the
data in a list in the OHLC format (Open,
High, Low, Close).

Logged in Users
Only

INPUT PROCESS STORAGE OUTPUT CHART

Arthur Robertson 31

Cryptica Social Media Analysis Application NEA

Input Process Storage Output

Login:
Username,
Password

Authenticate
Login
Credentials and
generate signed
JWT

Credentials supplied
hashed with same
settings and hash in
database, stored in
temporary variable
Compared against hash
in database RSA Private
Key stored in
environmental variable
for signing JWT

Depending on success,
either: Signed JWT
containing
authentication data
Error Message

Register
Account: First
name, Surname,
Email, Password

Create new User
Users supplied
password
hashed

User added to Users
table, with supplied
inputs and hashed
password

User Successfully
created User creation
Unsuccessful

Create
Comment:
News ID,
Content

Creates
comment Check
content for
potentially
offensive
content

Comment added to
Comments Table

Comment added
Successfully Comment
added Unsuccessfully

Delete
Comment:
Comment ID

Check comment
creator matches
who initialised
the request, OR
if the user has
admin privileges

Comment deleted from
Comments Table

Comment removed
Successfully Comment
removed Unsuccessfully

Twitter User
Search:
Username

Download
username’s
Tweets from the
Twitter API

Store tweets in
temporary array

Return array of tweets
Return error of none

Arthur Robertson 32

Cryptica Social Media Analysis Application NEA

FORM STRUCTURE

As my project is a website based application, the user will interact and supply data to my
program through HTML forms. There can then be a JavaScript function that takes the data
from the forms and makes a request to my API server containing the form data.

Login Form

The login form will consist of an email and password field, with a submit button. The password
field will have the type=”password” attribute, which means that the input will remain
hidden when entered, and will display as a • instead. E.g. when 12345678 is entered, it will be
displayed as ••••••••. This is a security feature implemented in HTML, that means that even if
someone can view your screen when you are entering your password, your password remains
unknown. Upon the submit button being clicked, a JavaScript function will be called. This
function will take the inputs inside the form, and submit a POST request to my API server login
endpoint containing them. From there, my server will process and verify the data, and will
return a status code. My website frontend will then display either a success or error message
depending on the status code returned.

Registration Form

This form will consist of a First Name field, a Surname field, an Email field, a password field,
and a submit button. Again, the password field will have the type=”password” attribute.
Upon clicking submit, another JavaScript function will take the form inputs and submit a
POST request to my API Server Register endpoint.

DATA DICTIONARY

My main application will consist of 3 tables, Users, News, and Comments. The users table will
store the details required to authenticate users and provide basic profile functionality. The
news table will store a list of news articles scraped to be displayed on the news article page,
and on the relevant cryptocurrency page. The comments table will store comments by the
users on certain news articles, and will reference both the users and news table. This ensures
that data is not unnecessarily repeated. Each user only features once, and can correspond to
multiple comments. Each news article can have multiple comments associated with it.

Arthur Robertson 33

Cryptica Social Media Analysis Application NEA

Below you can see a table that has a plan of the different columns that my three tables will
have. The column names are not final, and just serve as a description for now.

Column Table Data Type Description Example Data Validation

ID Users serial Auto generated
primary key for
user ID.

1 Required,
Incremental

First
Name

Users varchar(255) The first name
that the user
provides if they
wish.

Arthur Must be below
255 characters,
A-Z only

Last
Name

Users varchar(255) The last name
that the user
provides if they
wish.

Robertson Must be below
255 characters,
A-Z only

Email Users varchar(255) The email
address of the
user.

arthur@mail.co
m

Required, must
be below 255
characters

Hashed
Pass-
word

Users varchar(255) The users
password hash,
salted and
generated by the
server.

$argon2i$v=19$
m=16,t=2,p=1$d
WRSS2o5dU84S
3BrQVdBUA\$ir5
0+n9sxd1+qBs3
kNaY/A

Required, must
be below 255
characters and
in argon2 hash
format

Admin Users boolean A boolean that
states whether a
user is an Admin
which grants
certain
privileges.

true Default is false.
Only required if
true.

Arthur Robertson 34

mailto:arthur@mail.com
mailto:arthur@mail.com

Cryptica Social Media Analysis Application NEA

Column Table Data Type Description Example Data Validation

ID News serial Auto generated
primary key for
the news ID.

378 Required,
Incremental

PublicationNews varchar(255) The publication/-
source of the
news article.

The Verge Required, must
be below 255
characters

Author News varchar(255) The author of
the article, if
supplied.

Mitchell Clark Must be below
255 characters

Title News varchar(511) The title of the
news article.

US banking
regulators are
looking to clarify
crypto rules in
2022

Required, must
be below 511
characters

DescriptionNews varchar(1023) A summary of
the news article,
if supplied.

Three US
agencies have
issued a joint
statement
saying. . .

Must be below
1023 characters

URL News varchar(1023) A link to the
original news
article.

https://www.th
everge.com...

Required, must
be below 1203
characters and a
valid URL.

Image
URL

News varchar(1023) A link to the
feature image of
the news article,
if supplied.

https://cdn.vox-
cdn.com/...

Must be below
1203 characters
and a valid URL.

Arthur Robertson 35

https://www.theverge.com...
https://www.theverge.com...
https://cdn.vox-cdn.com/...
https://cdn.vox-cdn.com/...

Cryptica Social Media Analysis Application NEA

Column Table Data Type Description Example Data Validation

Date News varchar(255) The date of the
article’s
publication in
UNIX timestamp
format.

1640950072 Required, must
be below 255
characters and
in UNIX
timestamp
format.

Content News varchar(1023) Up to the first
1200 characters
of the article.

One of them is
already working
to make
banks. . .

Required, must
be below 1203
characters.

ID Commentsserial Auto generated
primary key for
comment ID.

51 Required,
Incremental

User ID Commentsint Foreign key,
references a user
in the USERS
table.

1 Required, must
be a valid
USER_ID

News ID Commentsint Foreign key,
references a
news article in
the NEWS table.

378 Required, must
be a valid
NEWS_ID

Date Commentsvarchar(255) The date of the
comments
creation in UNIX
timestamp
format.

1640950072 Required, must
be below 255
characters and
in UNIX
timestamp
format.

Arthur Robertson 36

Cryptica Social Media Analysis Application NEA

Column Table Data Type Description Example Data Validation

Content Commentsvarchar(2000) The content of
the comment
that the user has
inputted.

Oh no! Required, must
be below 2000
characters.
Disallowed
characters
should be
stripped.

ENTITY RELATIONSHIP DIAGRAM

A comment belongs to one news article and one user. An article and a user can both have
many comments.

Arthur Robertson 37

Cryptica Social Media Analysis Application NEA

Figure 8: Entity Relationship Diagram for my tables

SQL QUERIES PLAN

This table shows a few examples of SQL queries I will be using. The dollar symbol followed
by a number represents a variable. My project is using PostgreSQL, which is very similar to

Arthur Robertson 38

Cryptica Social Media Analysis Application NEA

MYSQL but offers some more features and better performance as mentioned previously. $n
represents variable n.

Description SQL Query

Select all entries from the specified
table

SELECT * FROM $1;

Count entries in the specified table SELECT COUNT(*) FROM $1;

Create a User in the Users table INSERT INTO users_tbl (user_first_name,
user_last_name, user_email, user_hashed_password,
user_admin) VALUES ($1, $2, $3, $4, $5);

Delete item from specified table
when variable matches

DELETE FROM $1 WHERE $2 = $3;

Update User by ID UPDATE users_tbl SET user_first_name = $1,
user_last_name = $2,user_ email = $3,
user_hashed_password = $4, user_admin = $5 WHERE
user_id = $6

Create Users Table CREATE TABLE IF NOT EXISTS users_tbl (user_id serial
PRIMARY KEY, user_first_name varchar(255),
user_last_name varchar(255), user_email
varchar(255), user_hashed_password varchar(255),
user_admin boolean);

Create News Table CREATE TABLE IF NOT EXISTS news_tbl (news_id serial
PRIMARY KEY, news_publication varchar(255),
news_author varchar(255), news_title varchar(511),
description varchar(1023), news_url varchar(1023),
news_imageUrl varchar(1023), news_date
varchar(255), news_content varchar(1023))

Create Comments Table CREATE TABLE IF NOT EXISTS comments_tbl
(comment_id serial PRIMARY KEY, comment_user_id
int, comment_news_id int, comment_content
varchar(2000), comment_date varchar(255))

Drop Table DROP TABLE $1;

Arthur Robertson 39

Cryptica Social Media Analysis Application NEA

Description SQL Query

Get all News ordered by Date SELECT news_id, news_title, news_publication,
news_imageurl, news_description, news_date FROM
news_tbl ORDER BY news_date DESC

Get news with keyword and limit SELECT news_title, news_imageurl, news_publication,
news_id, news_date FROM news_tbl WHERE
UPPER(news_title) LIKE $1 OR
UPPER(news_description) LIKE $1 OR
UPPER(news_content) LIKE $1 ORDER BY news_date
DESC LIMIT $2

Search item by column SELECT * FROM $1 WHERE $2 = $3;

Get Comments and User info from
News ID ordered by Date

SELECT comment_id, comment_user_id,
comment_content, comment_date, user_first_name,
user_last_name FROM comments INNER JOIN users
ON comments.comment_user_id = users.user_id
WHERE news_id = $1 ORDER BY date DESC

Insert an item into the news table Insert into News: INSERT INTO news_tbl
(news_publication, news_author, news_title,
news_description, news_content, url, news_imageurl,
news_date) VALUES ($1, $2, $3, $4, $5, $6, $7, $8)

Create a comment in the comments
table

INSERT INTO comments_tbl (comment_user_id,
comment_news_id, comment_content, date) VALUES
($1, $2, $3, $4)

Get News and associated
Comments by News ID

SELECT * FROM news_tbl INNER JOIN comments_tbl
ON news_id = comments_news_id WHERE news_id =
$1 ORDER BY comment_date DESC

CLASS DIAGRAMS

Below is a draft of some of the planned classes that I will be using in my program. I will
be making use of Object Orientated techniques such as encapsulation and abstraction to

Arthur Robertson 40

Cryptica Social Media Analysis Application NEA

efficiently represent complex structures.

Figure 9: Class Diagram for the Database related classes

This is a UML diagram of the Database related classes. The Session class is used to manage the
connection to the database, and access it at a low level. The Table class inherits the Session
class, and counts some generic functions, such as a function to get a count of the number of
rows in that table. The Comments, News, and Users class then inherits from the Table class,
and passes the table name to the Table class. These classes contain more special purpose
functions for interacting with the specific tables, however they can still access the general
functions when needed from the Table class.

Arthur Robertson 41

Cryptica Social Media Analysis Application NEA

Figure 10: Class Diagram for the Encoding related classes

The above is the class for encoding Base64 into and from Decimal. It inherits from the class
Encoding. This class exists in case I have a need to add any further encoding methods. Generic
functions that typically feature in encoding such as recurisvely adding zeros (add_zeros) can
feature here.

This UML diagram below contains the classes that will feature in the security section of my
application. AccessToken is the class that will be used to create JSON Web Tokens, and Argon2
is the class that will be used to hash and verify passwords.

Arthur Robertson 42

Cryptica Social Media Analysis Application NEA

Figure 11: Class Diagram for the Security related classes

Figure 12: Class Diagram for the User model

This is a draft of how the User’s can be represented with classes. The User class will have most
of the methods and apply to most people using the site, and the Admin class will have all the
same functionality with some added uses for Admins only.

Arthur Robertson 43

Cryptica Social Media Analysis Application NEA

Figure 13: Class Diagram for the News Article related classes

Here the News class inherits from the Author, Comments, and Publication class. I propose that
the comments Class has a data structure that allows comments to be removed and added.

Figure 14: Class Diagram for the Front End Authentication

Arthur Robertson 44

Cryptica Social Media Analysis Application NEA

This diagram shows a class that will be used in the frontend to handle authentication. The
Auth class will make use of methods in Cookie and HTTPRequest to send requests to the
API server to generate JWT tokens, and then save the returned token as a cookie. It will also
handles authenticated requests made to the server. Cookies need to be sent with requests
that are made to the server so the server can verify the user’s identity, so the Auth class will
make use of both it’s inherited classes to do this.

USER INTERFACE

When creating a mockup of how the user interface should look, two things were particularly
important. Functionality, and accessibility. It was crucial that the user interface should be
easy to use and efficient - not bogged down with unnecassary bloat like many large websites
these days. Below is a wireframe of the header that will feature on all pages. The high contrast
colours make it accessible, but still functional and aesthetically pleasing. The bar showing
the cryptocurrencies and their respective prices should ideally scroll, enabling approximately
10 coins to be shown on loop. There should also ideally be an “account” / “sign in” button,
perhaps where the “Search” button currently is. This can change depending on the user’s
login state.

Figure 15: The inspiration for the design, BBC News

Arthur Robertson 45

Cryptica Social Media Analysis Application NEA

Figure 16: A mockup of how the header and a general page could look.

For the analysis page, there are 3 main parts. The input field for the user to search for some-
one’s twitter handle, the tweet box that displays a list of the inputted user’s tweets, and finally
the analysis section that displays the price change, as well as the sentiment of the selected
tweet. I put together a basic mockup of what this could look like.

Arthur Robertson 46

Cryptica Social Media Analysis Application NEA

Figure 17: Analysis Page Mockup

Finally, I made a mockup of what the news page could look like. This page should be a
scrollable list of all the articles sorted by most recently added. At the top there could potentially
be a full width ‘Featured’ article, which could either be specifically chosen or the most recent
article. Clicking on any of the articles should take you to the page for the article.

Arthur Robertson 47

Cryptica Social Media Analysis Application NEA

Figure 18: News Page Mockup

One thing to note with the mockups is that the design is one of the least important parts of this
project. I will aim to complete all the functionality first, and then will work on the appearance
after.

COMMON SECURITY VULNERABILITIES AND MITIGATION

I need to ensure that my application is secure against common security vulnerabilities, and I
will need to take proper steps to ensure that my application is secure against the common ones.
Below I have researched some of the common security vulnerabilities that I will be ensuring
my program is robust about, and I have mentioned some common mitigation techniques
against said vulnerabilities.

Arthur Robertson 48

Cryptica Social Media Analysis Application NEA

SQL Injection

SQL Injection is one of the most common web vulnerabilities, that involves submitting a
malicious payload to the website that ends up being executed by the SQL server.

The following is an example of a function that would be vulnerable to SQL injection.

1 def fetch_users_password(username):
2 SQL_QUERY = "SELECT password FROM users_table WHERE username

='" + username + "';"
3 return execute_sql(SQL_QUERY)

If a hacker was to enter ' OR 1=1 into the following function, the SQL query would return
a list of all the users password, rather than the specified user. This is because 1=1 always
evaluates to True, and the OR statement means that the WHERE clause is true for all entries in
the database, resulting in all entries being returned.

Mitigation To ensure my application is secure against SQL Injection attacks, I will be using
prepared SQL statements. Prepared statements are a feature commonly provided in SQL
libraries, that allows the user to provide parameters to an SQL query, rather than having to
include the parameter values in the statement itself.

For example, the following statement does not use prepared statements: SELECT * FROM
users WHERE name = 'arthur';This could be remade using prepared SQL statements to
look like the following: SELECT * FROM users WHERE name = $1; Then, in this example
the value arthur could be supplied as a parameter. This prevents SQL injection attacks such
as the fetch_users_password example above.

Cross Site Scripting

Cross-Site Scripting (XSS) is similar to SQL Injection, however typically involves malicious
JavaScript code being injected into a webpage rather than SQL queries being abused. It
typically happens as a result of an application not filtering and sanitising user input. For
example, in a comment text field, I should not be able to insert HTML tags into the page.

Mitigation When handling user input, I will perform server side sanitation and validation
to ensure that the user’s input is not malicious. I will limit allowed characters, and perform

Arthur Robertson 49

Cryptica Social Media Analysis Application NEA

regex validation against text to ensure that there is no way an attack can inject code into a
page. In addition, I will HTML encode any comments that are being displayed onto my site.
HTML encoding turns characters such as < (which is used to open a HTML tag) into other
symbols that do not impact the page. For example, the string <script>would be turned into
<script>. When viewed on the page however, it will appear as the original string.

Broken Access Control

Broken Access Control vulnerabilities are when there is a lack of authorisation check when
attempting to access privileged resources / areas of a website. For example, as a user of a bank
I should be able to access my bank account balance, but not someone else’s. According to
OWASP.org, Broken Access Control is one of the most common website vulnerability seen.

Mitigation To mitigate against this sort of vulnerability, I will be creating functions to limit
access to specific pages and API routes. When creating a new page or API route, I will consider
who the intended user is, and carefully manage who can access. In addition when testing, I
will ensure that no user can access resources that I know they shouldn’t be able to.

SECURITY MEASURES

Below I have detailed the functionality behind some of the security measures I will be imple-
menting. I have also discussed some possible extensions.

JSON Web Tokens and RSA

As mentioned in the analysis section, I will be using JSON Web Tokens as a method for au-
thenticating and verifying my users identity.

JSON Web Tokens are an open standard (RFC 7519) for implementing a secure way to transmit
information between two parties (in my case the client and server) as a JSON object. This
information can be verified by making use of digital signatures. In my case, I will be signing my
JWTs using an RSA private key that I will generate. JWTs can be signed by a variety of different
algorithms, including ECDSA, and RSA. I chose to use an Asymmetric Key algorithm to sign my
JSON Web Tokens, as I am familiar with the core concepts behind them. This left me with 2
main options, ECDSA or RSA. I made the following comparison table to help me choose:

Arthur Robertson 50

https://tools.ietf.org/html/rfc7519

Cryptica Social Media Analysis Application NEA

ECDSA RSA

Type Asymmetric Public/Private
Key

Asymmetric Public/Private
Key

Complexity High Complexity Simpler than ECDSA to
implement

Key Length Much shorter keys required
to provide the same security

Typically uses 2048-bit or
4096-bit keys

Standardised Date 2005 1995

Widespread Use Less adopted than RSA Most widely used
asymmetric algorithm

Core Concept Works on the mathematical
representation of Elliptical
Curves

Works on the principle of the
Prime Factorisation problem

RSA I ended up on choosing RSA. I have done some work with RSA before, so I am already
familiar with how it mathematically works. In addition, it is still one of the most popular
choices for encryption algorithms and has been used for over 25 years, proving it has stood
the test of time.

RSA works on the prime factorisation problem. This put simply is the fact that two very large
prime numbers multiplied together produce a semiprime number. It is easy mathematically
to multiply the primes to form the semiprime, but it is incredibly difficult and computationally
hard to factorise the semi prime back into its original two prime numbers. RSA works in the
following way:

Generating Keys

1. You select two large prime numbers, p and q.
2. Calculate their product. n = p × q

3. Calculate the totient function. ϕ(n) = (p − 1)(q − 1)
4. Select a value of e. e should be coprime to ϕ(n) and 1 < e < ϕ(n). Numbers are coprime

if 1 is the only positive integer that divides them. In practice 65537 is very commonly
used as e, because it is a Fermat prime and is of suitable size for security.

Arthur Robertson 51

Cryptica Social Media Analysis Application NEA

5. The Public Key is the pair of numbers n, e. This can be shared to any party.
6. The Private Key (d) is calculated from the numbers p, q, and e. The numbers are related

with the Extended Euclidian Algorithm, which proves that e × d = 1 mod ϕ(n). d can be
found from this.

7. The Private Key is the pair of numbers n, d. This should be kept secret and is what will
be used to encrypt messages.

Encryption The following is an equation to encrypt using the previously found values for
the public key. P represents the plaintext, and C represent the cipher-text.

C = P e mod n

Decryption Decrypting follows a very similar process, though this time it uses the private
key.

P = Cd mod n

You can find some pseudocode and further information on RSA further down this document.

JWT

I chose to use JSON Web Tokens alongside RSA. JSON Web Tokens are composed of 3 parts
separated by dots, which are the Header, Payload, and Signature. A typical JWT looks like
the following:

xxxxx.yyyyy.zzzzz

Header The header contains information about the token, including the algorithm, and the
type. In my case, I am using RS256. This means I am using RSA, with SHA256 as the hashing
algorithm. My header will look like this:

1 {
2 "alg": "RS256",
3 "typ": "JWT"
4 }

This JSON is then encoded using Base64, to produce a string that looks like the following:

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9

Arthur Robertson 52

Cryptica Social Media Analysis Application NEA

Payload The payload contains the data that we want to transfer and verify between two
parties. This payload is then Base64 encoded, to produce another string. In my case, the
payload will likely contain the user’s email, their permissions, and the expiry time. The expiry
time denotes how long the token should be considered valid for. Choosing an expiry time is a
trade off between convenience and security - lower expiry means higher security, but requires
the user to authenticate more often.

Signature Finally, there is the signature. The signature is the most important part, and is
what ensures that we can trust the data in the payload is genuine and not modified. As I am
using RSA, the signature can also be used by the client to verify that the JWT has originated
from me using my public key.

The signature is made by first combining the header and payload with a ‘.’ in between. Then,
the RSA algorithm is applied to the result, using the hidden Private Key. This result is then
hashed using SHA256.

Combining the header, payload, and signature with a ‘.’ separating them produces our final
token, which can be sent to the client after they’ve authenticated. This will then be stored in
their cookies, and sent with all future requests to the server.

Verifying JWTs It is important that the JWTs are verified before the payload’s contents are
trusted. RSA and SHA256 produce the same outputs each time when the same inputs are
supplied. Therefore, to verify that the signature is correct, we can use the Base64 encoded
payload and header to recreate the signature with our Private Key. We can then compare our
newly created signature with the signature provided by the client. If they match, then we have
verified that the JWT is correct and was created by us, and we can trust it. And if they do not
match, then we can assume the JWT has been tampered with and is untrustworthy.

Authentication Walls

My users will have to login to access key functionality. My login page will send the login form
data to my API, where it will be checked to ensure that it’s valid. In the event that it is, my server
will return a signed JSON web token to the user, which will be stored in the browser’s cookies
with a short expiry. All subsequent requests to my API server will contain an authorisation
header with the token, which ensures that my server can verify who any requests came from
and that they are authorised.

Arthur Robertson 53

Cryptica Social Media Analysis Application NEA

Not all of my application and requests will be behind a login screen however. I will create a
function that allows certain routes to be protected, and others not.

API Server Security

I will be storing password hashes in my PostgresQL database, rather than plaintext. I will be
using the Argon2 hash function as previously described, which has excellent resistance to GPU
cracking and is suitable for storing passwords. When verifying passwords are correct, I can
make use of the verify function to compare a plaintext password with the hashed password
from the database. I will also be salting the passwords, which mitigates against hash table
attacks in the event of a data breach. These measures will help ensure my user’s information
remains secure. Salting is a practice involving adding a unique random string of characters
known only to the site to each password before it is hashed. This salt value is typically stored
in plaintext by the site, and is recalled when verifying a hash to ensure a password is correct.
Salts are a safeguarding method that ensures that even if two users have the same password,
the hash produced will be different. This can drastically slow down malicious hackers in
the event of the password database being leaked. My chosen password algorithm Argon2
automatically handles the generation and use of salts.

In addition, I will implement a password security requirement when signing up to ensure that
users use a secure password. The password requirements I will be enforcing are the following:
1. At least eight characters 2. At least one number 3. At least one uppercase letter 4. At least
one special character To implement this, I will be using a regex rule to match passwords that
meet the requirements. I will be using the following pattern: ^(?=.*[A-Z])(?=.*[a-z])
(?=.*[0-9])(?=.*[\W]).{8,}$ This complex pattern I developed checks against all my
defined requirements.

Testing Phase

In my testing phase, I will also be checking that my application is secure against common
website exploits, such as SQL and XSS injection which I have mentioned in the analysis section.
These sort of injection attacks involve sending maliciously crafted payloads in fields that accept
user input, such as login forms. Attackers hope that these payloads cause code to be executed
on the website server, which if successful would allow a malicious party to gain complete
access to the server. It is essential that no application is vulnerable to such attack. My testing
plan will detail how I will attempt to verify that my application is secure.

Arthur Robertson 54

Cryptica Social Media Analysis Application NEA

Additional Possible Measures

There are many additional security measures that I could implement to further improve my
applications security. It is unlikely that within the time period of this project I will be able to
implement any of the following, however they all act as possible extensions for the future.

Rate Limiting IP Based Rate limiting would mean that if a user makes too many requests
from one IP address in a short period of time, they would be temporarily blocked and pre-
vented from making further requests. This is an important feature that stops attackers from
brute forcing things such as password login attempts. Rate Limiting aims to only stop bots
and automated programs from making too many requests too fast - it should never affect a
user using the application typically. Ideally given time, this should be implemented either
using a library or a custom program.

CAPTCHA and Anti-Robot buttons CAPTCHA stands for the Completely Automated Public
Turing test to tell Computers and Humans Apart. They are designed to be able to distinguish
between real humans and robots, by providing pop up challenges to complete when clicked.
They are commonly used in login or registration forms to ensure that the person accessing the
application is real. CAPTCHA’s are very effective at stopping robots and automatic program
from using an application. This can stop attacks such as a site being flooded with spam.
CAPTCHA’s can be implemented using services such as Google’s reCAPTCHA. They are very
important with any public application.

Figure 19: Screenshot of what a Captcha typically looks like

Multi-Factor Authentication Multi-Factor Authentication (MFA) is an authentication tech-
nique that requires a user to provide multiple verification factors to be able to confirm their

Arthur Robertson 55

Cryptica Social Media Analysis Application NEA

login. One of the most common MFA factors used are one-time passwords. One-time pass-
words are codes typically sent via SMS or email to a user, that needs to be entered to access
the application. This adds an extra layer of protection, as it means that even if an attacker
has your password, they require an extra layer to gain access to your account. Most MFA
techniques are based on one of three things:

Knowledge These are things you know. These include security questions, additional PINs,
or other passwords.

Inherence These include permanent attributes that you as a person have. For example,
voice, fingerprint, iris or other biometric recognition.

Possession Possession includes things that you have access to and control of. For example,
you have access to your smartphone which can receive a one-time password over SMS, or you
have access to your email. You can also get security USB keys, which requires the physical
device present to authenticate.

Most important apps will require you to have some form of Multi-Factor authentication these
days, especially apps that relate to finance.

IP Tracking and Blocking Many secure applications use your IP address and other device
information when you are authenticating as an extra layer of security. They aim to identify
suspicious patterns and halt them. For example, if you consistently log into a website from
the UK, and then suddenly attempt to login from Russia, the login attempt might be flagged
as suspicious and stopped. This is tricky to implement, and often requires the use of machine
learning models to attempt to predict users behavior.

BACKUPS

Frequent backups are important with all online applications. The source code for the program
will be backed up onto GitHub. GitHub is a version control system that acts as a code repository
and tracks changes over time. GitHub is a free cloud service used by millions, meaning that
even if the source code is accidentally deleted from the computer while developing, it is secure
in the cloud and can be easily restored.

Arthur Robertson 56

Cryptica Social Media Analysis Application NEA

When the program is running, the Postgres database will need to be backed up as well. Postgres
offers 3 main approaches to backing up data:

SQL Dump This method involves creating a “dump” of the database. It will generate a text
file of SQL commands that can be run again on the server to recreate the database to the
same state as when the dump was created. PostgreSQL offers a built in way of doing this,
through the pgdump command. Running this command produces a set of SQL commands
that should be saved to a file for later use. Restoring is as simple as pasting the commands
back into the SQL shell. I will setup an automatic system to before this type of backup weekly,
and the backup dumps will be saved to an external server.

File System Level Backups Another method that PostgreSQL offers for backups are File
System Level Backups. These involve directly copying the files PostgreSQL generates to store
the data in a database, and restoring them at a later point when required. This method is
however not as suited as SQL Dumps, as the database server must be shut down in order
to get a backup. In addition, the file size generated by this backup is typically much larger
than an SQL dump. This method also requires advanced knowledge of the UNIX file system -
restoring an SQL dump is a much easier experience for the client.

Continuous Archiving and Point-in-Time Recovery Continuous Archiving and Point-in-
Time Recovery is PostgreSQL’s equivalent to an incremental backup. Incremental backups
are a backup of all changes made since the last backup. With incremental backups, there
is normally one full backup done first. Then, future backups just track changes since then.
This helps save in storage size and normally results in much faster backups. If I was expecting
the database to grow to a large size, I would be using this backup method. However, given
the limited nature of what is being stored I do not expect the database to grow past a few
megabytes in size. This makes SQL dumps more suited, due to the low complexity required to
setup, compared to the advanced setup required with an incremental backup.

SENTIMENT ANALYSIS

The sentiment analysis portion of the project will likely be a technically complex part. As per
my clients request, I will be making a model to analyse tweets and the sentiment of their
content. You can view some details about how I will be doing this below.

Arthur Robertson 57

Cryptica Social Media Analysis Application NEA

Algorithm

I have chosen to use a bidirectional Long Short-Term Memory neural network. LSTMs are a
type of Recurrent Neural Networks capable of processing entire sequences of data. They are
particularly suited to classifying text, which is why I will be using one. This will be implemented
with the use of TensorFlow and Keras, which have built in support.

Dataset

To train my machine learning model I will be using a dataset I have found on the website Kaggle.
Kaggle is a Google owned company that allows users to publish and find data sets for purposes
such as my own. The dataset I have chosen to use is a collection of tweets with their sentiment
already classified. My machine learning model will then use this dataset to learn from and
train itself. The dataset comes from the following link: https://www.kaggle.com/c/tweet-
sentiment-extraction/data

The dataset consists of a CSV file with over 27,000 rows. Each row contains 4 columns, textID,
text, sentiment, and selected_text. textID is a unique ID for each row, text is the
original tweet, sentiment is either neutral, positive, or negative depending on the
content, and selected_text is the part of the text that is responsible for the sentiment.

For example, the following is a sample from the dataset:

textID text sentiment selected_text

997a62f83f These kids are
terrible! If I was in
Good Evans, I‘d call
Childline

negative These kids are
terrible!

For my purposes, I am just interested in the sentiment and selected_text column, which
will provide enough information to train a model.

This dataset will need preprocessing. Preprocessing is the act of removing unwanted parts
and turning the dataset into something useful to a computer. In my case, this will include
removing punctuation, URLS, emails, and other unwanted characters from the dataset. I will
create a function to do this.

Arthur Robertson 58

https://www.kaggle.com/c/tweet-sentiment-extraction/data
https://www.kaggle.com/c/tweet-sentiment-extraction/data

Cryptica Social Media Analysis Application NEA

Before the dataset can be interpreted, it needs to be Tokenized. Tokenization is the process of
splitting up each text into smaller pieces such as individual words or phrases, called Tokens.
Algorithms typically need text to be tokenised to understand what is going on.

The dataset will also be split into two parts, a training set, and a testing set. The training set
will consist of 75% of the dataset. This will be used to create the model. The other 25% will
consist of a testing set. This will be used after the model is created to test and evaluate it’s
accuracy.

Training

Training a neural network is hardware intensive. For this reason, I will be making use of the
free service Google Collab. Google Collab offers free access to powerful GPUs and lets users
run python programs in the cloud. I expect the program to take several hours to complete
training.

Exporting

Once the model is trained, I will export it as a Pickled object. Pickling is the process of
converting a Python object into a byte stream that can be stored. I will download the Pickled
trained model from Google Collab for use in my API server. Then it will be as simple as
developing a function to unpickle the file, allowing access to the trained model. Then, the API
will have access to all the models functionality, and can be used to detect sentiment.

SERVER HARDWARE

My web application will need several components constantly running to ensure 24/7 uptime.

Client Frontend

I will be running my frontend client application using an online service called Vercel. Vercel is
a service made by the creators of Next.js, the JavaScript library my frontend is using, and is
suited towards hosting Next.js apps. Vercel offers a generous free tier that will allow my app
to be hosted on their network of cloud servers at no cost. I will then be able to create a DNS

Arthur Robertson 59

Cryptica Social Media Analysis Application NEA

record on a domain of my choice to point towards Vercel’s servers, allowing easy access to
the frontend application.

API Server and Database

My API server and Database will use another online free service called Heroku. Heroku is
capable of hosting Python web applications such as the API server, and can also create and
manage databases. Heroku manages maintenance of the server and database, allowing for
an easy development and maintenance experience.

ALGORITHM DESIGN

Sentiment Analysis

I will be using the Python Module Tensorflow to train my sentiment analysis model. Tensorflow
abstracts away from much of the underlying code, however it will still require me to configure
and train a model.

The dataset I am using does not come preprocessed, and contains raw tweets. This means the
text in the dataset contains unwanted features, such as hashtags, URLs, and emojis. These are
not useful to train a sentiment analysis model on, as I am just interested in the text meaning
instead. For this reason, I will need to preprocess my dataset and turn it into a friendly format.
I have described some of the preprocessing algorithms I will need to develop below:

Load_Dataset Function This function will use a built in CSV module to load a dataset from
a .csv file, and return the relevant columns to be stored as a variable.

1 FUNCTION LOAD_DATASET(Path)
2 Dataset = LOAD_CSV_FILE(Path)
3 Dataset = Dataset[['selected_text', 'sentiment']]
4 RETURN Dataset
5 ENDFUNCTION

Clean Function This function will take a dataset as its input. It will then perform Regex
matching onto each item in the dataset and remove Regex matches from each item. It will then
return a cleaned list. I have provided a description of what each Regex pattern does below.

Arthur Robertson 60

Cryptica Social Media Analysis Application NEA

This function also makes use of lambda, or “Anonymous” functions. Lambda functions are
suited to single use functions that take use of other functions - in my case a regex substitution
function. Regex.SUB takes three inputs. The first input is a regex rule to match against. The
second input is a string to replace any found matches with. The third and final input is the
string to test the regex against.

1 IMPORT Regex
2
3 FUNCTION CLEAN(Data)
4 Data = Data.apply(lambda x: Regex.SUB(r'http\S+', '', x))
5 Data = Data.apply(lambda x: Regex.SUB(r'#\S+', '', x))
6 Data = Data.apply(lambda x: Regex.SUB(r'@\S+', '', x))
7 Data = Data.apply(lambda x: Regex.SUB(r'[^\w\s]', '', x))
8 Data = Data.apply(lambda x: Regex.SUB(r'\s+', ' ', x))
9 Data = Data.apply(lambda x: Regex.SUb(r"\'", "", x))

10 RETURN Data
11 ENDFUNCTION

Expression Description

$http\S+ Matches all URLs

#\S+ Matches all #Hashtags

@\S+ Matches all @Mentions

[^\w\s] Matches all non alphanumerical characters

\s+ Matches multiple sequential spaces

\'" Matches single quotation marks

Create_Sequences Function I will be using an external Python module to create a tokenizer
to apply to my dataset.

1 IMPORT Tokenizer
2
3 FUNCTION CREATE_SEQUENCES(Data)
4 Tokenizer = Tokenizer()
5 Tokenizer.FIT_ON_TEXTS(Data)
6 RETURN Tokenizer.Texts_To_Sequences(Data)
7 ENDFUNCTION

Arthur Robertson 61

Cryptica Social Media Analysis Application NEA

Once I have my dataset preprocessed, training is fairly straightforward. You can see below
some Pseudocode showing what my training file might look like.

1 IMPORT Tensorflow
2
3
4 Dataset = SHUFFLE(Dataset)
5
6 TRAINX = Dataset['selected_test'][:int(len(Dataset)*0.8)]
7 TESTX = Dataset['selected_test'][int(len(Dataset)*0.8):]
8 TRAINY = Dataset['sentiment'][:int(len(Dataset)*0.8)]
9 TESTY = Dataset['sentiment'][int(len(Dataset)*0.8):]

10
11 Model = LSTM()
12
13 Model.ADD(Layers.Embedding(MAX_WORDS=5000, INPUT_LENGTH=200))
14 Model.ADD(Layers.Bidirectional(Layers.LSTM(20, DROPOUT=0.6)))
15 Model.ADD(Layers.Dense(3, ACTIVATION='softmax'))
16
17 Model.COMPILE(OPTIMIZER='rmsprop', LOSS='

categorical_crossentropy', METRICS=['accuracy'])
18 Model.FIT(TRAINX, TRAINY, EPOCHS=100)
19
20 OUTPUT(Model.EVALUATE(TESTX, TESTY))
21
22 TEXT_TO_TEST = INPUT('Enter a text to test: ')
23 OUTPUT(Model.Predict(TEXT_TO_TEST))

Authentication

I have made a flowchart demonstrating how authentication will be handled.

Arthur Robertson 62

Cryptica Social Media Analysis Application NEA

Figure 20: Flowchart of Authentication Flow

The authentication process will make use of several different functions and components of
my project. I have created some Psuedocode for some of the key ones that will be used.

Create_JWT Function The Create_JWT function is a core part of the authentication flow. It
makes use of the base64 functions that are described further down, and also makes use of
the RSA keys created. It takes a payload as an input, which will contain data such as the user’s
email in JSON format.

1 FUNCTION CREATE_JWT(Payload, Private_Key):
2 Header = '{"alg":"RS256","typ":"JWT"}'
3 Header_Encoded = Base64.ENCODE(header.encode('utf-8')).decode('

ascii').strip('=')
4 Payload_Encoded = Base64.ENCODE(payload.encode('utf-8')).decode

('ascii').strip('=')

Arthur Robertson 63

Cryptica Social Media Analysis Application NEA

5 Body = Header_Encoded + '.' + Payload_Encoded
6
7 Signature = RSA_SIGN(PRIVATE_KEY, Body, 'sha256')
8 Signature_Base64 = Base64.ENCODE(Signature).STRIP('=').REPLACE(

'+', '-').REPLACE('/', '_')
9

10 JWT = Body + '.' + Signature_Base64
11 RETURN JWT
12 ENDFUNCTION

Verify_JWT Function The Verify_JWT function will be used to check a JWTs authenticity,
by confirming that the signature is correct and signed by the private RSA key. For this, we can
use the corresponding public key to check - a property of asymmetric cryptography.

1 FUNCTION VERIFY_JWT(JWT, Public_Key):
2 Header, Body, Signature = JWT.SPLIT('.')
3 Signature_Decoded = Base64.DECODE(Signature.REPLACE('-','+').

REPLACE('_','/')+'==')
4
5 TRY:
6 RSA_VERIFY(Public_Key, Signature_Decoded, (Header + '..' +

Body), 'sha256')
7 RETURN True
8 EXCEPT Exception: # Signature can't be verified
9 return False

10 ENDFUNCTION

RSA (Rivest–Shamir–Adleman) Key Generator

RSA is an encryption algorithm that takes advantage of modular arithmetic principles. As
previously described, I will be requiring some code to generate RSA keys. Below, I have detailed
the different components and shown how they could be made. I have decided to split up the
key generation into several different functions to improve readability.

Miller_Rabin Function The Miller Rabin primality test is an algorithm that attempts to
estimate whether a number is likely to be a prime number. It is one of the simplest yet fastest
tests known to solve this problem. RSA requires large prime numbers to be generated, so I

Arthur Robertson 64

Cryptica Social Media Analysis Application NEA

need a way of telling if a number is prime or not. I will be dealing with numbers up to the size
2**48, so a lookup table of prime numbers would not be suitable.

The functions time complexity is the following: O(k log3 n). k is how many rounds the function
is to be performed. In my case, I have chosen to use 10 rounds. The round number is a trade
of between performance and accuracy.

1 FUNCTION MILLER_RABIN(NUM)
2 S = NUM - 1
3 T = 0
4
5 WHILE S MOD 2 == 0
6 S = S // 2
7 T = T + 1
8 ENDWHILE
9

10 FOR X IN RANGE(10) # repeat 10 times, for 10 rounds
11 A = RANDOM.RANDINT(2, NUM - 1) # generate random number

less than input num
12 V = (A ** S) MOD NUM
13 IF V NOT == 1
14 I = 0
15 WHILE V NOT == NUM - 1
16 IF I == T
17 RETURN FALSE
18 ELSE
19 I = I + 1
20 V = (V**2) MOD NUM
21 ENDIF
22 ENDWHILE
23 ENDIF
24 ENDFOR
25
26 RETURN TRUE

Arthur Robertson 65

Cryptica Social Media Analysis Application NEA

Figure 21: Miller Rabin Function Flowchart

Arthur Robertson 66

Cryptica Social Media Analysis Application NEA

Generate_Prime function This function will repeatedly generate a large number that has
the specified keysize number of bits. It then estimates if the number is a prime number or
not using the RABBIN_MILLER function. If it estimates the number to be prime, it returns the
number. If not, it will repeat the process until it finds a prime.

1 KEYSIZE = 1024
2
3 FUNCTION GENERATE_PRIME(KEYSIZE)
4 WHILE True
5 NUM = RANDOM_INT(2**(KEYSIZE-1),2**KEYSIZE)) # generate

a number of keysize bits
6 IF MILLER_RABIN(NUM) == True
7 RETURN NUM # keep on running loop until we generate

a prime
8 ENDIF
9 ENDWHILE

10 ENDFUNCTION

Figure 22: Generate Prime Function Flowchart

Arthur Robertson 67

Cryptica Social Media Analysis Application NEA

Extended_Euclidean_Algorithm Function The Extended Euclidean Algorithm is used dur-
ing key generation to find the modular inverse of the value E with (P - 1)* (Q - 1). Due
to our previously defined functions to create the public and private key, we know that the
value of E is relatively prime to (P - 1)* (Q - 1). This means there exists integers X and
Y such that (E*X)+ ((P - 1)* (Q - 1)* Y)= 1.

1 FUNCTION EGCD(A, B)
2 IF A == 0: # in the case that A is 0, we need to return B,

0, 1
3 RETURN (B, 0, 1)
4 ELSE
5 GCD, Y, X = EGCD(B % A, A) # recursively call the

function, with the inputs B mod A, and A
6 RETURN (GCD, X - (B // A) * Y, Y) # return a tuple using

some of the output of the EGCD function. // is
integer division.

7 ENDIF
8 ENDFUNCTION

Figure 23: Euclidean Algorithm Flowchart

Generate_Key This will use the previously defined functions to create the final RSA keys for
use. Each key consists of two number values. The Public key consists of the value for N with

Arthur Robertson 68

Cryptica Social Media Analysis Application NEA

the value E. The Private key consists of N and D. Further up in the document you can view an
explanation of the mathematics behind RSA, and what each of the numbers signify.

1 P = GENERATE_PRIME(1024)
2 Q = GENERATE_PRIME(1024)
3
4 N = P * Q
5 E = 65537
6
7 G, X, Y = EGCD(E, (P - 1) * (Q - 1))
8
9 D = X % (P - 1) * (Q - 1)

10
11 PUBLICKEY = (N, E)
12 PRIVATEKEY = (N, D)

Base64

Base64 is a binary to text encoding scheme that can represent binary text in ASCII format.
Base64 is typically used to encode data to be sent over a network.

Each Base64 digit represents 6 bits of data. I will be using Base64 as previously explained
when I create my JSON Web Tokens to be sent to the client.

Add_zeros function This will be a recursive function used by both the encoding and decod-
ing function, to add zeros padding to a binary value until the length of the binary is a multiple
of 8. For example inputting 101011 will return 00101011, 10001000 will return 10001000,
and inputting 1 will return 00000001

1 BINARY = USERINPUT
2
3 FUNCTION ADD_ZEROS(BINARY)
4 IF LEN(BINARY) MOD 8 NOT == 0 THEN
5 BINARY = '0' + BINARY
6 RETURN ADD_ZEROS(BINARY)
7 ELSE
8 RETURN BINARY
9 ENDIF

10 ENDFUNCTION

Arthur Robertson 69

Cryptica Social Media Analysis Application NEA

Figure 24: Add_Zeros Function Flowchart

Encoding This function will be used to encode text into base64.

1 constant TABLE = '
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
+/' # defines the constant TABLE with all the base64
characters

2 BINARY = None # define varibale BINARY
3 TEXT = USERINPUT # defines the text variable, that assigned to

the value of the user's input
4 BASE64 = None # define variable BASE64
5
6 FOR LETTER IN TEXT # iterate through each letter in the variable

text
7 BINARY <- BINARY + ADD_ZEROS(CODE_TO_BINARY(CHAR_TO_CODE(

LETTER))) # append to binary, the binary representation
of the letter with zeros padded

8 ENDFOR
9

10 WHILE LEN(BINARY) MOD 3 NOT == 0 # while the length of binary is
not a multiple of 3:

11 BINARY = BINARY + '00000000' # append 8 zeros. these are the
padding characters

12 ENDWHILE

Arthur Robertson 70

Cryptica Social Media Analysis Application NEA

13
14 FOR NUM = 1 TO LEN(BINARY) # iterate through the length of the

binary
15 IF NUM MOD 6 == 0 THEN
16 BINARY = BINARY[:NUM] + ' ' + BINARY[NUM:] # add a space

every 6th digit
17 ENDIF
18 ENDFOR
19
20 BINARY <- SPLIT(BINARY, ' ') # split the binary into a list at

the spaces
21
22 FOR ITEM IN BINARY # iterate through the list of binary
23 IF ITEM == '000000' # if the item in the list is 6 zeros
24 BASE64 = BASE64 + '=' # then this is padding, and

represented by an equals sign. add to the base64
string

25 ELSE # otherwise
26 BASE64 = BASE64 + TABLE[BINARY_TO_DECIMAL(ITEM)] #

convert the item to decimal, then append the item in
the table with the index of the decimal item to the
base64 string

27 ENDIF
28 ENDFOR
29
30 OUTPUT BASE64 # output the final result

Decoding Decoding follows a similar process, but in reverse. The following pseudocode
details how this could be implemented.

1 constant TABLE = '
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
+/'

2 BINARY = None
3 TEXT = None
4 BASE64 = USERINPUT
5
6 FOR LETTER IN BASE64
7 IF LETTER == '='
8 BINARY = BINARY + '000000'
9 ELSE

10 BINARY = BINARY + ADD_ZEROS(DECIMAL_TO_BINARY(INDEX(
TABLE, LETTER)))

Arthur Robertson 71

Cryptica Social Media Analysis Application NEA

11 ENDIF
12 ENDFOR
13
14 WHILE LEN(BINARY) MOD 3 NOT == 0
15 BINARY = BINARY + '00000000'
16 ENDWHILE
17
18 BINARY = SPLIT(BINARY, ' ')
19
20 FOR ITEM IN BINARY
21 IF NOT ITEM == '00000000'
22 TEXT = TEXT + CODE_TO_CHAR(BINARY_TO_CODE(ITEM))
23
24 OUTPUT TEXT

TEST PLAN

To ensure my program is functioning as intended, I will need to carry out tests on all parts of
my program.

I will test the accessibility and usability of my front end website’s GUI. This will include using
Google’s Lighthouse website testing tool. Lighthouse runs a series of audits against the page,
and then generates a report based on how well the page did. It is accessible from Chrome
Dev Tools. The report ends up giving a score between 0 and 100, with a detailed breakdown. I
would like to aim for a score of at least 90.

I will then do some black box testing. This will let me imitate a user, and will let me ensure
that from a user’s point of view, everything functions as intended. I can do this by interacting
with my program and ensuring that it performs as expected without any faults. Here is where
I will be testing that my program performs as expected, and produces correct graphs. I will
create a checklist of functionality to test for. I will be recording a sample of this process and
uploading it as a video.

I will be making use of tools to perform in-depth security testing on my application. Burp
Suite is an integrated platform and graphical tool for performing security testing, which offers
a free community license. I will be making use of this and previous experience to audit and
test my application. Burp Suite offers many different features, the following of which I will be
using:

Arthur Robertson 72

Cryptica Social Media Analysis Application NEA

• Scanner - This can be used to perform automatic scans of an application and flag any
found vulnerabilities

• Intercepter - By proxying my network traffic through Burp Suite, I can view, intercept,
and modify HTTP requests sent to my application in real time. This will allow me to test
erroneous data and imitate an attacker.

• Repeater - Burp Suite automatically logs all requests made to an application, and allows
them to be viewed retrospectively. It also allows these requests to be repeated, but
with modified paramaters. I will use this to test for vulnerabilities such as XSS and SQL
injection. I will ensure that all API routes are tested using this method, with a range of
data supplied.

Finally, I will verify that several of my algorithms such as RSA function as intended by manually
checking the mathematics and inputs. I will test that encryption and decryption successfully
works using my RSA keys by using the formula I have described in the design phase. This will
allow me to prove that my RSA keys are valid.

I will use the a table similar to the following to record my tests, and I will provide evidence as I
go.

Description Actual Result Expected Result

I have completed a table full of the exact tests I will be carrying out in each component of the
project. To save unnecassarily repeating, you can find the table with evidence in the testing
stage of this document.

IMPLEMENTATION

TABLE OF FILES

My application is split up into three separate parts: Client, API, and Server.

Arthur Robertson 73

Cryptica Social Media Analysis Application NEA

The Client is the front end web application that the user interacts with. It will be the only part
that the user will have to access, and provides a nice interface for accessing the applications
functionality.

The API is another web application, but one that the user will not be required to directly use. It
will be interacted with through HTTP requests, such as POST, GET, PUT, and DELETE. The Client
will make these requests to the API on behalf of the user, and the API will return data that will
then be interacted with by the client. The API will handle functionality such as authentication,
data fetching and processing, and more.

The Server part is a collection of files that typically need to be run only once, or at specific
times. Whilst the API and Client will need to be constantly running, the Server files will not.
This will include files to do things such as updating the news database, generating RSA keys,
and more.

A reasonable proportion of the files in the Client section of the application consists mainly
of just HTML and CSS. For that reason, part of the Client section will not be annoted, unless
there is any noteworthy algorithms in them.

The table below shows the list of files that my program contains, as well as a short description
of their purpose and a reference to the page that their code is on.

File Path Purpose

api/.env Provide the environmental variables for the
API section. Used for storing secrets.

api/main.py The main file that launches and creates the
API server.

api/api/auth.py Provides the API routes to handle users
logging in and registering accounts.

api/api/crypto.py Provides an API route to return
cryptocurrency price data from the Binance
API.

api/api/news.py Provides API routes to create, read, update,
and delete news articles and comments from
the backend database.

Arthur Robertson 74

Cryptica Social Media Analysis Application NEA

File Path Purpose

api/api/twitter.py Provides an API route to return a collection of
tweets from Twitter’s API for a specified user.

api/api/users.py Provides API routes to query and access user
information. Also provides CRUD routes to
modify users.

api/core/auth.py Provides functions used by the API routes to
handle authentication.

api/core/binance.py Contains a class for interacting with
Binance’s API to access cryptocurrency data.

api/core/security.py Provides a class and functions for creating
and verifying JSON Web Tokens, used in
authentication.

api/db/crud.py Provides a set of functions for interacting
with the database using SQL queries.

api/db/schemas.py Contains a set of classes representing the
database models. Used by the FastAPI
python module for interacting with API
routes.

api/db/session.py Contains a Session class for connecting to
the database.

api/utils/base64.py Contains a class for encoding and decoding
between base64 and ascii.

client/.env Provide the environmental variables for the
Client section. Used for storing secrets.

client/next.config.js Configuration file for Next.js

client/package.json Configuration file for JavaScript

client/component/comments.js HTML Components

client/component/loading.js Loading Wheel Component

client/component/account/welcome.js Welcome Banner Component

Arthur Robertson 75

Cryptica Social Media Analysis Application NEA

File Path Purpose

client/component/admin/heatmap.js Heatmap graph Component

client/component/admin/linechart.js Linechart graph Component

client/component/admin/piechart.js Piechart graph Component

client/component/admin/profile.js Twitter Profile Component

client/component/admin/table.js Table Component

client/component/admin/tableitem.js Table Item Component

client/component/analysis/input.js Text Input Component

client/component/analysis/ohcl.js Candlestick Chart Component

client/component/analysis/search.js Search Field Component

client/component/analysis/tweet.js Tweet Component

client/component/analysis/user.js Twitter User Component

client/component/coin/graph.js Candlestick Chart Component

client/component/coin/relatednews.js Related News Component

client/component/coin/sidearticle.js Sidebar Article Component

client/component/coin/tableitem.js Table Item Component

client/component/layout/layout.js General Layout Component

client/component/layout/pagination.js Pagination Support Component

client/component/layout/sidebar.js Sidebar Component

client/component/layout/navbar/account.js Navbar Button Component

client/component/layout/navbar/header.js Navbar Header Component

client/component/layout/navbar/navbar.js Navbar Component

client/component/layout/navbar/price.js Navbar Price Subbar Component

client/component/layout/navbar/ticker.js Navbar Ticker Component

client/component/layout/ticker/general.js Navbar Ticker Component

client/component/layout/ticker/index.js Navbar Ticker Component

Arthur Robertson 76

Cryptica Social Media Analysis Application NEA

File Path Purpose

client/component/news/comments.js Comments Field Component

client/component/news/content.js News Content Component

client/component/news/feature.js Feature News Article Component

client/component/news/post.js News Post Component

client/services/auth.js Authentication Service. A class for checking
the status of a user’s authentication, as well
as performing authorised HTTP requests.

client/pages/account/index.js Account Page

client/pages/account-analysis/index.js Account Analysis Page

client/pages/admin/index.js Admin Page

client/pages/tweet-analysis/index.js Tweet Analysis Page

client/pages/coin/[coin].js Specific Coin Page

client/pages/coin/index.js Coin Leaderboard Index Page

client/pages/login/index.js Login Page

client/pages/news/[id].js News Article Page

client/pages/news/index.js News Index Page

client/pages/register/index.js Register Page

client/pages/users/[id].js User Profile Page

client/pages/_app.js Encases all pages in JS component

client/pages/_document.js Adds HTML metadata to all pages

client/pages/404.js Page displayed when client attempts to visit
page that does not exist (404).

client/pages/global.css Global CSS applied to every page.

server/news/fetch.py Class that contains methods for fetching data
from the News API, and interacting with the
Database.

Arthur Robertson 77

Cryptica Social Media Analysis Application NEA

File Path Purpose

server/news/db.py Class that contains methods for interacting
with the Postgres Database.

server/twitter/tweets.ipynb Function to demonstrate and test fetching
tweets and performing analysis using
MatPlotLib and Tweepy.

server/rsa/keygen.py Function to generate RSA Private and Public
Key.

server/sentiment/train.py File to train and create the neural network
model

ADVANCED TECHNIQUES

I have provided a table that highlights some of the advanced programming techniques used,
and which file you will find them in.

Technique File(s)

Recursion api/utils/base64.py, server/rsa/keygen.py

Advanced SQL Queries api/db/crud.py, server/news/fetch.py

Complex Mathematical
Algorithms

server/rsa/keygen.py

Object Orientated
Programming Techniques

client/services/auth.js, api/core/security.py

Hashing and Encryption api/core/security.py

Exception Handling api/core/auth.py, api/core/security.py

Complex Client-Server
Model

client/services/auth.js, client/pages/login/index.js,
client/pages/tweet-analysis/index.js

Arthur Robertson 78

Cryptica Social Media Analysis Application NEA

Technique File(s)

Parsing External Web
Services APIs

client/pages/coin/[coin].js, client/services/auth.js,
client/pages/account-analysis/index.js

ANNOTATED PROGRAM FILES

api/main.py

This file is responsible for launching the API server, and importing the different elements. It
also connects the server to the database, and makes use of middleware. The middleware
intercepts every request made to the server, and modifies the request object to include the
database class instance. This means that the other files can access the same database class
instance by accessing the request object. I did this for performance - rather than connecting
to the database each time it needs to be queried, I can maintain a consistence connection
that exists for as long as the file is running. This increases performance, and decreases server
load to my database.

1 # third party module imports
2 from fastapi import FastAPI, Depends, Request
3 import uvicorn
4 from fastapi.middleware.cors import CORSMiddleware
5
6 # imports for the different endpoints/routes
7 from api.users import users_router
8 from api.auth import auth_router
9 from api.news import news_router

10 from api.crypto import crypto_api
11 from api.twitter import twitter_router
12
13 # imports for the database
14 from db.session import Session
15 from db.crud import Crud
16 # imports for authentication
17 from core.auth import get_user, get_admin
18
19 origins = [
20 "http://localhost:5000",
21 "http://localhost:8080",

Arthur Robertson 79

Cryptica Social Media Analysis Application NEA

22 "http://localhost:3000",
23 "https://nea.vercel.app",
24 "https://cryptica.arthurr.co.uk",
25 "*"
26] # defines a list of origins for CORS requests
27
28 app = FastAPI(openapi_url=None) # creates the FastAPI app with

no OpenAPI documentation
29 db = Crud("DATABASE_URL") # creates a database session using the

DATABASE_URL environment variable
30
31 app.add_middleware(# adds the CORS middleware to the app. This

allows cross-origin requests to be made from the defined list
of origins

32 CORSMiddleware,
33 allow_origins=origins,
34 allow_methods=["*"], # allows all HTTP methods, e.g. GET,

POST, PUT, DELETE
35 allow_headers=["*"], # allows all HTTP headers, e.g.

Authorization, Content-Type
36)
37 #
38
39 @app.middleware("http") # adds the middleware to the app. This

allows the database session to be passed to the request
object

40 async def db_session_middleware(request, call_next): # defines
the middleware function

41 request.state.db = db # adds the database to request.state.
db

42 response = await call_next(request) # calls the next
middleware function

43 return response # returns the response from the next
middleware function

44
45 @app.on_event("startup") # adds the startup event to the app
46 async def startup():
47 await db.connect()
48 await db.create_table_users() # creates the users table if

it doesn't exist
49 await db.create_table_news() # creates the news table if it

doesn't exist
50 await db.create_table_comments() # creates the comments

table if it doesn't exist
51

Arthur Robertson 80

Cryptica Social Media Analysis Application NEA

52 @app.on_event("shutdown") # adds the shutdown event to the app
53 async def shutdown():
54 await db.close() # closes the database connection
55
56 @app.get("/api/hello") # defines the endpoint /api/hello
57 async def root():
58 return {"message": "Hello World"} # returns Hello World.

this is a test endpoint
59
60 app.include_router(users_router, prefix="/api/users",
61 dependencies=[Depends(get_user)]) # includes

the users router in the app. This adds all
the endpoints defined in the users file
to the app. The prefix is the path that
the endpoints will be added to. The
dependencies are the dependencies that are
required for the endpoints to be called.

62 app.include_router(auth_router, prefix="/api/auth") # includes
the auth router in the app.

63 app.include_router(news_router, prefix="/api/news") # includes
the news router in the app.

64 app.include_router(twitter_router, prefix="/api/twitter") #
includes the twitter router in the app.

65 app.include_router(crypto_api, prefix="/api/crypto") # includes
the crypto router in the app.

66
67 if __name__ == "__main__": # defines the main function that runs

if the file is run directly
68 uvicorn.run("main:app", host="0.0.0.0", reload=True, port

=8000) # runs the app on the localhost on port 8000

api/api/auth.py

This file is responsible for the authentication routes of the API application. This contains a
set of endpoints that allow the user to login, register, and verify their authentication status
through HTTP requests. This file makes use of classes imported from other files, such as the
AccessToken class which is responsible for the generation of JWT tokens.

1 from os import access
2 from fastapi import APIRouter, Depends, HTTPException, status,

Request
3

Arthur Robertson 81

Cryptica Social Media Analysis Application NEA

4 from datetime import timedelta
5
6 from core import security
7 from core.auth import authenticate, sign_up, get_user
8 from db.schemas import UserLogin, UserCreate, UserEdit
9 import re

10
11 auth_router = router = APIRouter() # creates the auth router
12
13 @router.post("/login")
14 async def login(form_data: UserLogin, request: Request): #

defines the login endpoint with the form data and the request
object

15 user = await authenticate(request, form_data.email,
form_data.password) # attempts to authenticates the user
using the form data

16 if not user: # if the user doesn't exist)
17 raise HTTPException(
18 status_code=status.HTTP_401_UNAUTHORIZED,
19 detail="Incorrect username or password",
20 headers={"WWW-Authenticate": "Bearer"},
21) # returns a 401 error
22
23 if user['admin']: # if the user object has an admin field
24 permissions = "admin" # sets the permissions to admin
25 else: # otherwise
26 permissions = "user" # sets the permissions to user
27 access_token = security.AccessToken(# creates an access

token object using the AccessToken class
28 data={"sub": user['email'], "permissions": permissions})

sets the data to the user's email and permissions
for the access token

29 return {"access_token": access_token.get_token(), "
token_type": access_token.type} # returns the access
token and the token type

30
31 @router.post("/register")
32 async def signup(form_data: UserCreate, request: Request): #

defines the signup endpoint with the form data and the
request object

33 signups_enabled = True # sets the signups_enabled variable
to true. This can be changed to false to disable signups

34 if not signups_enabled: # if signups are disabled
35 raise HTTPException(# returns a 403 error
36 status_code=status.HTTP_403_FORBIDDEN,

Arthur Robertson 82

Cryptica Social Media Analysis Application NEA

37 detail="Signups are currently disabled",
38)
39
40 if not re.match(r'^(?=.*[A-Z])(?=.*[a-z])(?=.*[0-9])(?=.*[\W

]).{8,}$', form_data.password): # if the password doesn't
match the regex

41 raise HTTPException(# returns a 400 error
42 status_code=status.HTTP_400_BAD_REQUEST,
43 detail="Invalid Password",
44)
45 if not re.match(r'^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0

-9-.]+$', form_data.email): # if the email doesn't match
the regex

46 raise HTTPException(# returns a 400 error
47 status_code=status.HTTP_400_BAD_REQUEST,
48 detail="Invalid Email",
49)
50 if len(form_data.first_name) < 3 and len(form_data.last_name

) < 3: # if the first name and last name are less than 3
characters

51 raise HTTPException(# returns a 400 error
52 status_code=status.HTTP_400_BAD_REQUEST,
53 detail="Invalid Name",
54)
55
56 user = await sign_up(request, # attempts to sign up the user

using the form data
57 form_data.email, form_data.password, form_data.

first_name, form_data.last_name) # sets the user
variable to the response of the sign_up function

58 if not user: # if there is an error with the sign_up
function and it does not return a created user

59 raise HTTPException(# returns a 400 error as the user
already exists

60 status_code=status.HTTP_409_CONFLICT,
61 detail="Account already exists",
62 headers={"WWW-Authenticate": "Bearer"},
63)
64 else: # otherwise
65 access_token = security.AccessToken(# creates an

access token object using the AccessToken class
66 data={"sub": user[0]['email'], "permissions": "user"

}) # sets the data to the user's email and
permissions for the access token

67 return {"access_token": access_token.get_token(), "

Arthur Robertson 83

Cryptica Social Media Analysis Application NEA

token_type": access_token.type} # returns the access
token and the token type

68
69 @router.get("/me")
70 async def user_me(current_user=Depends(get_user)): # defines the

/me that returns 200 if the user is authenticated
71 if current_user['admin']: # if the current user is an admin
72 return {'status': 200, 'admin': 'true', 'id':

current_user['id']} # returns 200 and the admin field
and the id field

73 return {'status': 200} # otherwise returns 200
74
75 @router.put("/edit")
76 async def edit_user(form_data: UserEdit, current_user=Depends(

get_user)):
77 return

api/api/crypto.py

This file contains the API routes required to get cryptocurrency data from the API server. It
uses the Binance class which is defined in another file to get historical data. The get_price
function can take two inputs, one for the ticker (e.g. BTCUSDT), and one for the time in UNIX
timestamp format. I have chosen to use UNIX to represent time as it can be represented as an
integer, making it easy to work with and parse.

1 from core.auth import get_user, get_admin
2 import datetime
3 from core.binance import Binance
4 from fastapi import APIRouter, Depends, HTTPException, status,

Request
5
6 crypto_api = router = APIRouter()
7 binance = Binance() # creates a new instance of the Binance

class
8
9 @router.get("/{ticker}/{time}") # defines an endpoint that can

take a ticker and a time parameter
10 def get_price(ticker, time, current_user=Depends(get_user)):
11 start = int(time) - 1800 # sets the start variable to the

time parameter minus 30 minutes
12 stop = int(time) + 5400 # sets the stop variable to the time

parameter plus 90 minutes

Arthur Robertson 84

Cryptica Social Media Analysis Application NEA

13 return binance.get_historic(ticker, '1m', str(start), str(
stop)) # returns the response of the get_historic
function from the Binance class

api/api/news.py

This file contains the API routes for everything related to the News section of the site. This
includes routes for fetching news, deleting news, searching for news, posting comments, and
more.

1 import db.crud as crud
2 from core.auth import get_user, get_admin
3 import datetime
4 from fastapi import APIRouter, Depends, HTTPException, status,

Request
5
6 news_router = router = APIRouter()
7
8 @router.get('/')
9 async def get_news(request: Request): # defines an endpoint that

reutnrs all the news
10 return await request.state.db.get_news() # returns the

response of the get_news function from the crud class
11
12 @router.get('/comments/')
13 async def all_comments(request: Request, current_user=Depends(

get_admin)): # defines an endpoint that returns all the
comments. Requires admin permissions

14 return await request.state.db.get_comments() # returns the
response of the get_comments function from the crud class

15
16 @router.get('/{id}')
17 async def get_news_by_id(id, request: Request): # defines an

endpoint that returns a news item by its id
18 return await request.state.db.get_news_by_id(id) # returns

the response of the get_news_by_id function from the crud
class

19
20 @router.get('/{id}/comments')
21 async def get_news_comments(id, request: Request): # defines an

endpoint that returns all the comments for a news item
22 return await request.state.db.get_comments_by_news_id(id) #

returns the response of the get_comments_by_news_id

Arthur Robertson 85

Cryptica Social Media Analysis Application NEA

function from the crud class
23
24 @router.post('/{id}/comments')
25 async def create_comment(id: int, comment: dict, request:

Request, current_user=Depends(get_user)): # defines an
endpoint that creates a comment for a news item. Requires
user to be authenticated and to provide a comment

26 comments = {'user_id': current_user['id'], 'news_id': id,
27 'date': datetime.datetime.now().strftime("%Y-%m

-%d %H:%M:%S"), 'content': comment['content'
]} # creates a dictionary with the user id,
news id, date and content of the comment

28 return await request.state.db.create_comment(comments) #
returns the response of the create_comment function from
the crud class. Supplied with the comments dictionary

29
30 @router.delete('/{id}/comments/{comment_id}') # defines an

endpoint that deletes a comment for a news item. Requires
admin permissions or the user to be the author of the comment

31 async def delete_comment(id: int, comment_id: int, request:
Request, current_user=Depends(get_user)): # supplied with the
news id and comment id

32 comment = await request.state.db.get_comments_by_id(
comment_id) # returns the response of the
get_comments_by_id function from the crud class

33 if comment['user_id'] == current_user['id'] or current_user[
'admin']: # checks if the user is the author of the
comment or an admin

34 return await request.state.db.delete_comment(comment_id)
deletes the comment using the delete_comment

function from the crud class
35 else: # if the user is not the author of the comment or an

admin
36 raise HTTPException(# returns a 401 unauthorized error
37 status_code=status.HTTP_401_UNAUTHORIZED,
38 detail="Unauthorized",
39 headers={"WWW-Authenticate": "Bearer"},
40)
41
42 @router.post('/')
43 async def create_news(article: dict, request: Request,

current_user=Depends(get_admin)): # defines an endpoint that
creates a news item. Requires admin permissions

44 return await request.state.db.create_news(article) # returns
the response of the create_news function from the crud

Arthur Robertson 86

Cryptica Social Media Analysis Application NEA

class. Supplied with the article dictionary
45
46 @router.post('/search')
47 async def search_phrase(search: dict, request: Request): #

defines an endpoint that searches for a phrase in the news
items

48 return await request.state.db.get_news_by_phrase(search['
phrase']) # returns the response of the
get_news_by_phrase function from the crud class. Supplied
with the phrase parameter

api/api/twitter.py

This file uses Twint, a python module for fetching tweets. It has a /search route that allows
users to request tweets with a selection of search paramaters.

1 import random
2 import re
3 from types import SimpleNamespace
4 from fastapi import APIRouter, Request, Depends
5 import db.crud as crud
6 from core.auth import get_user, get_admin
7 import twint
8 import time
9 import nest_asyncio

10 from utils.sentiment import Sentiment
11 nest_asyncio.apply()
12 twitter_router = router = APIRouter()
13
14 twitter = twint.Config()
15 sentiment = Sentiment() # load the sentiment class
16
17 def get_user_details(username): # defines a function that gets

user details from twitters API using twint
18 u = twint.Config() # creates a new instance of the twint

class
19 u.Username = username # sets the username parameter to the

username supplied
20 u.Store_object = True # sets the store_object parameter to

true
21 twint.run.Lookup(u) # runs the Lookup function from the

twint class

Arthur Robertson 87

Cryptica Social Media Analysis Application NEA

22 return twint.output.users_list[-1] # returns the last item
in the users_list variable from the twint class

23
24 @router.get('/search') # defines an endpoint that can take a

query parameter
25 def get_tweets_phrase(coin=None, limit=100, minlikes=0,

minretweets=0, minreplies=0, username=None, since=None, until
=None, popular=None, retweets=None, sentiment=False,
hide_tweets=None, current_user=Depends(get_user)):

26 tweets = [] # creates an empty list to store the tweets
27 if username: # if the username parameter is supplied
28 username = re.sub(r'\W+', '', username) # removes all

non a-Z characters from the username parameter
29 user = get_user_details(username) # gets the user

details from the twint class
30 twitter.Username = username.lower() # sets the username

parameter to the username supplied
31 if hide_tweets: # if the hide_tweets parameter is supplied
32 return user # returns the user details
33 if int(limit) > 1000: # if the limit parameter is greater

than 1000
34 limit = 1000 # cap the limit parameter to 1000
35 twitter.Store_object = True # sets the store_object

parameter to true
36 twitter.Store_object_tweets_list = tweets # sets the

store_object_tweets_list parameter to the tweets list
37 twitter.Hide_output = True # sets the hide_output parameter

to true
38 twitter.Min_likes = int(minlikes) # sets the min_likes

parameter to the minlikes parameter
39 twitter.Min_replies = int(minreplies) # sets the min_replies

parameter to the minreplies parameter
40 twitter.Min_retweets = int(minretweets) # sets the

min_retweets parameter to the minretweets parameter
41 twitter.Search = coin # sets the search parameter to the

coin parameter
42 twitter.Limit = int(limit) # sets the limit parameter to the

limit parameter
43 twitter.Since = since # sets the since parameter to the

since parameter
44 twitter.Until = until # sets the until parameter to the

until parameter
45 twitter.Popular_tweets = bool(popular) # sets the

popular_tweets parameter to the popular parameter
46 twitter.Filter_retweets = bool(retweets) # sets the

Arthur Robertson 88

Cryptica Social Media Analysis Application NEA

filter_retweets parameter to the retweets parameter
47 for a in range(1, 5): # loops through the range of 1 to 5.

this is because twitter's API is buggy, and sometimes
returns nothing even though there is data to be found.
repeating the request 5 times if it returns nothing is a
workaroud to this issue

48 twint.run.Search(twitter) # runs the Search function
from the twint class

49 if len(tweets) > 0: # if the length of the tweets list
is greater than 0

50 break # break the loop
51 if sentiment: # if the sentiment parameter is supplied
52 for tweet in tweets: # loops through the tweets list
53 tweet.sentiment = sentiment.predict(tweet.tweet) #

sets the sentiment parameter of each tweet to the
sentiment of the tweet

54 if user: # if the user parameter is supplied
55 return tweets, user # returns the tweets and the user

details
56 if len(tweets) == 0: # if the length of the tweets list is 0
57 print("No tweets found for ", username) # print a

message to the console
58 return tweets # returns the tweets

api/api/users.py

This file contains the collection of API routes required to handle user authentication.

1 from db.schemas import UserCreate, UserEdit
2 from fastapi import APIRouter, Depends, Request
3
4 import db.crud as crud
5 from core.auth import get_user, get_admin
6
7 users_router = router = APIRouter()
8
9 @router.get("/admins")

10 async def admins(request: Request, current_user=Depends(
get_admin)): # defines an endpoint that returns all the
admins

11 return await request.state.db.get_admins() # returns the
response of the get_admins function from the crud class

12

Arthur Robertson 89

Cryptica Social Media Analysis Application NEA

13 @router.get("/count")
14 async def user_count(request: Request, current_user=Depends(

get_admin)): # defines an endpoint that returns the number of
users

15 return await request.state.db.count_users() # returns the
response of the count_users function from the crud class

16
17 @router.get("/",)
18 async def users(request: Request, current_user=Depends(get_admin

)): # defines an endpoint that returns all the users
19 return await request.state.db.get_users() # returns the

response of the get_users function from the crud class
20
21 @router.get("/me")
22 async def user_me(request: Request, current_user=Depends(

get_user)): # defines an endpoint that returns the current
user

23 return await request.state.db.get_profile(current_user['id'
], True) # returns the response of the get_profile
function from the crud class. Supplied with the user id
and True for the profile parameter

24
25 @router.get("/{user_id}")
26 async def user_details(request: Request,
27 user_id: int,
28 current_user=Depends(get_admin)): #

defines an endpoint that returns the
user with the supplied id

29 return await request.state.db.get_user(user_id) # returns
the response of the get_user function from the crud class

30
31 @router.put("/me")
32 async def edit_profile(request: Request, data: UserEdit,

current_user=Depends(get_user)): # defines an endpoint that
edits the current user's profile

33 return await request.state.db.edit_profile(current_user['
id'], data) # returns the response of the edit_profile
function from the crud class

34
35
36 @router.put("/{user_id}")
37 async def user_edit(request: Request, user_id: int, user:

UserEdit, current_user=Depends(get_admin)): # defines an
endpoint that edits the user with the supplied id

38 return await request.state.db.edit_user(user_id, user) #

Arthur Robertson 90

Cryptica Social Media Analysis Application NEA

returns the response of the edit_user function from the
crud class

39
40 @router.delete("/{user_id}")
41 async def user_delete(request: Request,
42 user_id: int,
43 current_user=Depends(get_admin),
44): # defines an endpoint that deletes the

user with the supplied id
45
46 return await request.state.db.delete_user(user_id) #

returns the response of the delete_user function from the
crud class

47
48 @router.post("/")
49 async def user_create(request: Request, user: UserCreate,

current_user=Depends(get_admin),): # defines an endpoint that
creates a new user. requires admin privileges

50 return await request.state.db.create_user(user) # returns
the response of the create_user function from the crud
class

51
52 @router.get("/{user_id}/profile")
53 async def user_comments(request: Request, user_id: int): #

defines an endpoint that returns the user's comments
54 return await request.state.db.get_profile(user_id, False) #

returns the response of the get_profile function from
the crud class

api/core/auth.py

This file contains a collection of functions that are used throughout the API to verify and get
user’s details.

1 from fastapi import Depends, HTTPException, status, Request
2
3 from core import security
4
5 async def get_user(request: Request): # defines the get_user

function. this function is used to get the current user from
the request, which can then be used to verify the user's
identity

Arthur Robertson 91

Cryptica Social Media Analysis Application NEA

6 error = HTTPException(# defines the error variable as an
HTTPException

7 status_code=status.HTTP_401_UNAUTHORIZED,
8 detail="Failed to validate credentials",
9 headers={"WWW-Authenticate": "Bearer"},

10)
11
12 token = request.headers['Authorization'].replace('Bearer ',

'') # gets the token from the request headers
13 try: # attempts to decode the token
14 payload = security.AccessToken(token=token) # creates an

access token object using the AccessToken class
15 payload_data = payload.get_data() # gets the data from

the payload
16 email = payload_data['sub'] # gets the email from the

payload
17 if email is None: # if the email is None
18 raise error # returns the error)
19 permissions = payload_data['permissions'] # gets the

permissions from the payload
20 except Exception as e: # if the token is invalid and the RSA

signature is invalid
21 print(e)
22 raise error # returns the error
23 user = await request.state.db.get_user_by_email(email)
24 if user is None: # if the user is None
25 raise error # returns the error
26 if user['admin'] == False and permissions == 'admin': # if

the user is not an admin and the permissions in the token
are admin

27 raise error # returns the error
28 return user # returns the user
29
30 async def get_admin(# defines the get_admin function. this is

similar to the get_user function, but it only returns users
with admin permissions

31 current_user=Depends(get_user), # gets the current user from
the request

32):
33 if not current_user['admin']: # if the current user is not

an admin
34 raise HTTPException(# returns an HTTPException
35 status_code=403, detail="The user doesn't have

enough privileges"
36)

Arthur Robertson 92

Cryptica Social Media Analysis Application NEA

37 return current_user # returns the current user if the user
is authenticated and the user is an admin

38
39 async def authenticate(request: Request, email, password): #

defines the authenticate function. this function is used to
authenticate the user

40 user = await request.state.db.get_user_by_email(email) #
gets the user from the database using the email

41 if not user: # if the user is not found
42 return False # returns false
43 if not security.verify_password(password, user['

hashed_password']): # if the password is not correct and
the supplied password hash is not equal to the hashed
password stored in the database

44 return False # returns false
45 return user # returns the user if the password is correct
46
47 async def sign_up(request: Request, email, password, first_name,

last_name): # defines the sign_up function. this function is
used to sign up a new user

48 user = await request.state.db.get_user_by_email(email) #
gets the user from the database using the email

49 if user: # if the user is found
50 return False # user already exists
51 return await request.state.db.create_user(# else creates

the user using the create_user function and a dictionary
containing the user's supplied details

52 {
53 'email': email,
54 'password': password,
55 'first_name': first_name,
56 'last_name': last_name,
57 'admin': False}
58),

api/core/binance.py

This file contains a class for interacting with Binance’s API to fetch data related to Cryptocur-
rencies. It inherits from the third party python-binance module.

1 import os
2 from binance.client import Client as Client
3

Arthur Robertson 93

Cryptica Social Media Analysis Application NEA

4 class Binance(Client): # creates a new class called Binance that
inherits from the Client class from the binance library

5 def __init__(self):
6 self.binance_key = os.getenv('BINANCE_KEY') # gets the

BINANCE_KEY from the environment variables
7 self.binance_secret = os.getenv('BINANCE_SECRET') # gets

the BINANCE_SECRET from the environment variables
8 super().__init__(self.binance_key, self.binance_secret)

calls the __init__ function from the binance
library and passes the BINANCE_KEY and BINANCE_SECRET
as parameters

9
10 def get_historic(self, ticker, interval, start, stop): #

creates a function called get_historic that takes a
ticker, interval, start and stop as parameters

11 return self.get_historical_klines(ticker, interval,
start, stop) # returns the response of the
get_historical_klines function from the binance
library

api/core/security.py

This file contains theAccessTokenandArgon2 class. TheArgon2 class is used for hasing and
verifying passwords using the argon2 module. The AccessToken class is used for generating
and verifying JSON Web Tokens. The AccessToken class can be initialised with two methods.
One, by supplying user data to be turned into a JSON Web Token. In this case, upon initilisation
a JWT will be generated and accessable through the class. The other option is to intiliase the
class by supplying it with an existing JSON Web Token. This can be used to verify that a token
is valid, as if it is initialised this way, the class will attempt to decode and verify the tokens
genuinity before allowing it to be accessed.

1 from passlib.hash import argon2 # from passlib.hash import the
argon2 class

2 from datetime import datetime, timedelta # import the datetime
and timedelta modules

3 import os # import the os module for loading environment
variables

4 from utils.base64 import Base64 # import the base64 class from
utils.base64

5 from OpenSSL import crypto # import the OpenSSL crypto module
6 from OpenSSL.crypto import X509 # import the X509 class from the

Arthur Robertson 94

Cryptica Social Media Analysis Application NEA

OpenSSL crypto module
7 import json # import the json module for loading and dumping

JSON
8
9 class Argon2:

10 def __init__():
11 return
12
13 def hash_password(password): # define the hash_password

function
14 return argon2.hash(password) # return the argon2 hash of

the password, using the argon2 class and an
automatically generated salt

15
16 def verify_password(password, password_hash): # define the

verify_password function
17 result = password_hash == argon2.using(salt=Base64.

decode((
18 password_hash.split(',')[2].split('$')[1] + '==').

encode('utf-8'))).hash(password) # return the
result of the password_hash being equal to the
argon2 hash of the password, using the argon2
class and the salt from the password_hash

19 return result # if they are equal it will return true,
otherwise it will return false. If true the password
is correct, if false the password is incorrect

20
21 base64 = Base64() # create a new instance of the Base64 class
22 class AccessToken(): # create Access Token Class
23 def __init__(self, data=None, token=None): # initialises the

class, allows the data and token to optionally be passed
in

24 self._private_key = os.getenv('RSA_PRIVATE_KEY') # gets
the private key from the environment variables

25 self._public_key = os.getenv('RSA_PUBLIC_KEY') # gets
the public key from the environment variables

26 self.algorithm = "RS256" # variable that sets the
algorithm to RS256

27 self.header = '{"alg":"'+self.algorithm+'","typ":"JWT"}'
variable that sets the header to the algorithm and
type

28 self.expires = 60 * 24 * 7 # sets the expiry of the
token to 7 days (60 seconds * 24 hours * 7 days)

29 self.type = 'bearer' # this is the name of the header in
the web request that the token is sent in

Arthur Robertson 95

Cryptica Social Media Analysis Application NEA

30 if data: # if the data is passed in
31 self.data = data
32 # add expiry to data. expiry is current timestamp +

expiry
33 self.data['exp'] = datetime.timestamp(
34 datetime.now() + timedelta(minutes=self.expires)

)
35 self.token = self.create_access_token() # create the

token using the create_access_token function
36 elif token: # if the token is passed in
37 self.token = token # set the token to the token

passed in
38 if self.verify_token() != True: # check if the token

is valid and the signature matches the public
key

39 raise Exception("Invalid token") # if not raise
an exception

40 self.data = self.__decode_token() # decode the token
and set the data to the decoded token

41 if "exp" not in self.data: # if the expiry is not in
the data

42 raise Exception("Token has no expiry") # raise
an exception

43 if self.data["exp"] < datetime.utcnow().timestamp():
if the expiry is less than the current

timestamp
44 raise Exception("Token has expired") # raise an

exception
45 else: # if no data or token is passed in
46 raise ValueError('You must provide either data or

token') # raise an exception
47 self.__init__()
48
49 def get_token(self): # get the token
50 return self.token
51
52 def get_data(self): # get the data
53 return self.data
54
55 def __decode_token(self): # decode the token
56 header, body, signature = self.token.split('.') # split

the token into the header, body and signature at the
.

57 body_decoded = Base64.decode(
58 body.replace('-', '+').replace('_', '/')+'==') #

Arthur Robertson 96

Cryptica Social Media Analysis Application NEA

decode the body with base64. Replace the - and _
with + and /

59 return json.loads(body_decoded) # return the decoded
body as a json object

60
61 def verify_token(self): # verify the token
62 header, body, signature = self.token.split('.') # split

the token into the header, body and signature at the
.

63 signature_decoded = Base64.decode(
64 signature.replace('-', '+').replace('_', '/')+'==')

decode the signature with base64. Replace the -
and _ with + and /

65 x509 = X509() # create a new x509 object. this is used
to load the public key to then verify the signature

66 x509.set_pubkey(crypto.load_publickey(
67 crypto.FILETYPE_PEM, self._public_key)) # load the

public key from the public key variable
68 try: # try to verify the signature
69 crypto.verify(x509, signature_decoded,
70 (header + '.' + body), 'sha256') #

verify the signature against the
header and body, using sha256 as
the hashing algorithm and RSA")

71 return True # if the signature is verified return
true

72 except Exception as e: # if the signature is not
verified and an exception is raise return false")

73 print(e)
74 return False
75
76 def create_access_token(self): # create the access token
77 header_encoded = base64.encode(self.header).strip('=') #

encode the header with base64. Strip the = from the
end

78 payload_encoded = base64.encode(
79 str(self.data).replace("'", '"').replace(" ", "")).

strip('=') # encode the payload with base64.
Strip the = from the end

80 body = header_encoded + '.' + payload_encoded # combine
the header and payload

81 pr_key = crypto.load_privatekey(crypto.FILETYPE_PEM,
self._private_key) # load the private key from the
private key variable

82 signature = crypto.sign(pr_key, body, 'sha256') # sign

Arthur Robertson 97

Cryptica Social Media Analysis Application NEA

the body with sha256 and the private key with RSA
83
84 signature_base64 = Base64.encode(signature).decode(
85 'ascii').strip('=').replace('+', '-').replace('/', '

_') # encode the signature with base64. Strip the
= from the end. Replace the + and / with - and _

86 jwt = body + '.' + signature_base64 # combine the body
and signature

87 return jwt # return the jwt
88
89 def __str__(self): # string representation of the token
90 return str(self.token)
91
92 def __repr__(self): # representation of the token
93 return str(self.token)

api/db/crud.py

This file contains a selection of classes for working with the database section of the application.
The Session class is used for low level interactions with the database through the asynpg
python module. Then, the Table class inherits from Session and provides some basic

functions for working with general tables, such as a function to count how many rows in
the database there are. Finally, there are three classes for each of the separate tables in
my program. These contain functions specific to each of the tables, however they use the
functionality inherited from the previous two classes. As mentioned in the

1 from core.security import hash_password
2 import asyncpg
3
4 class Session(): # creates a new class called Session
5 def __init__(self, url):
6 self.url = os.getenv(url), # gets the url from the

environment variables
7 self._cursor = None # creates a cursor variable
8 self.con = None # creates a connection variable
9

10 async def connect(self): # creates a function called connect
11 self.connection_pool = await asyncpg.create_pool(dsn=

self.url[0], max_size=3, min_size=1) # creates a
connection pool using the url from the environment
variables and the max_size and min_size parameters

Arthur Robertson 98

Cryptica Social Media Analysis Application NEA

12 self.db = self.connection_pool
13
14 async def close(self): # creates a function called close
15 if self.connection_pool: # checks if the connection pool

exists
16 await self.connection_pool.close() # closes the

connection pool
17
18 async def execute(self, query, *args): # creates a function

called execute
19 async with self.connection_pool.acquire() as conn: #

acquires a connection from the connection pool
20 return await conn.execute(query, *args) # executes

the query and returns the result
21
22 class Table(Session): # creates a new class called Table
23 def __init__(self, url, table_name): # initializes the class
24 super().__init__(url) # initializes the super class with

the url passed in
25 self.table_name = table_name # sets the table name

variable to the table_name passed in
26
27 async def drop_table(self): # creates a function to drop the

table in the class
28 await self.execute('DROP TABLE $1', self.table_name) #

drops the table
29
30 async def get_all(self): # creates a function to get all the

data from the table
31 query = f'SELECT * FROM {self.table_name}' # creates a

query to get all the data from the table
32 return await self.execute(query)
33
34 async def get_by_column(self, column, id): # creates a

function to get all the data from the table by a column
35 query = f'SELECT * FROM {self.table_name} WHERE {column}

= $1' # creates a query to get all the data from the
table by a column

36 return await self.execute(query, id)
37
38 async def count(self): # creates a function to count the

number of rows in the table
39 query = f'SELECT COUNT(*) FROM {self.table_name}' #

creates a query to count the number of rows in the
table

Arthur Robertson 99

Cryptica Social Media Analysis Application NEA

40 return await self.execute(query)
41
42 class News(Table): # creates a new class called News
43 def __init__(self, url): # initializes the class
44 super().__init__(url, 'news') # initializes the super

class with the url passed in and the table_name
passed in

45
46
47 async def create_table_news(self): # creates a function to

create the table in the class
48 await self.execute(# creates a table called news
49 'CREATE TABLE IF NOT EXISTS news (id serial PRIMARY

KEY, publication varchar(255), author varchar
(255), title varchar(511), description varchar
(1023), url varchar(1023), imageUrl varchar(1023)
, date varchar(255), content varchar(1023))'

50)
51
52 async def get_news_and_comments(self):
53 news_and_comments = await self.fetch('SELECT * FROM news

INNER JOIN comments ON news.id = comments.news_id
ORDER BY date DESC') # creates a query to get all the
data from the table, using inner join to get the

comments
54 if not news_and_comments: # checks if the

news_and_comments variable is empty
55 return None # returns none
56 return news_and_comments # returns the news_and_comments

variable
57
58 async def get_news_and_comments_by_news_id(self, news_id):
59 news_and_comments = await self.fetch('SELECT * FROM news

INNER JOIN comments ON news.id = comments.news_id
WHERE news.id = $1 ORDER BY date DESC', int(news_id))
creates a query to get all the data from the table

, using inner join to get the comments, sorting the
comments by date

60 if not news_and_comments: # checks if the
news_and_comments variable is empty

61 return None # returns none
62 return news_and_comments # returns the news_and_comments

variable
63
64

Arthur Robertson 100

Cryptica Social Media Analysis Application NEA

65 async def get_news(self): # gets all news from the table
sorted by date

66 news = await self.fetch('SELECT id, title, publication,
imageUrl, description, date FROM news ORDER BY date
DESC')

67 if not news:
68 return None
69 return news
70
71 async def get_news_by_title(self, title): # gets all news

from the table with matching title
72 news = await self.fetch('SELECT * FROM news WHERE title

= $1', title)
73 if not news:
74 return None
75 return news
76
77 async def get_news_by_author(self, author): # gets all news

from the table with matching author
78 news = await self.fetch('SELECT * FROM news WHERE author

LIKE $1 ORDER BY date DESC', author)
79 if not news:
80 return None
81 return news
82
83 async def get_news_by_phrase(self, phrase, limit=5): # gets

all news from the table with matching phrase in the title
or description or content

84 news = await self.fetch('SELECT title, imageurl,
publication, id, date FROM news WHERE UPPER(title)
LIKE $1 OR UPPER(description) LIKE $1 OR UPPER(
content) LIKE $1 ORDER BY date DESC LIMIT $2', (f'%{
phrase}%'.upper()), limit) # %{phrase}% is a wildcard
to search for the phrase in the title or description
or content

85 if not news:
86 return None
87 return news
88
89 async def get_news_by_id(self, id): # gets all news from the

table with matching id
90 if not id:
91 return None
92 news = await self.fetchrow('SELECT title, content,

author, publication, imageurl, url, date FROM news

Arthur Robertson 101

Cryptica Social Media Analysis Application NEA

WHERE id = $1', int(id)) # creates a query to get all
the data from the table with matching id

93 if not news:
94 return None
95 comments = await self.fetch('SELECT comments.id, user_id

, content, date, first_name, last_name FROM comments
INNER JOIN users ON comments.user_id = users.id WHERE
news_id = $1 ORDER BY date DESC', int(id)) # query

to get all the comments from the table with matching
id using inner join to get the user

96 if not comments:
97 return dict(news) # return the news dictionary
98 return {**dict(news), 'comments': comments} # returns

the news dictionary with the comments dictionary
99

100 async def create_news(self, news):
101 await self.execute(# insert into news table with

provided news dictionary
102 'INSERT INTO news (publication, author, title,

description, content, url, imageUrl, date) VALUES
($1, $2, $3, $4, $5, $6, $7, $8)',

103 news['publication'], news['author'], news['title'],
news['description'], news['content'], news['url'
], news['imageUrl'], news['date']

104)
105
106 async def delete_news(self, id):
107 await self.execute(# delete from news table with

provided id
108 'DELETE FROM news WHERE id = $1', int(id)
109)
110 return id
111
112 async def edit_news(self, id, news):
113 await self.execute('UPDATE news SET title = $1,

description = $2, content = $3, author = $4, date =
$5 WHERE id = $6',

114 news['title'], news['description'], news
['content'], news['author'], news['
date'], int(

115 id) # update news table by id with
provided news dictionary

116)
117 return news
118

Arthur Robertson 102

Cryptica Social Media Analysis Application NEA

119
120 class Comments(Table): # creates a new class called Comments
121 def __init__(self, url):
122 super().__init__(url, 'comments') # initializes the

super class with the url passed in and the table_name
passed in

123
124 async def get_comments_by_id(self, id):
125 comments = await self.fetchrow('SELECT * FROM comments

WHERE id = $1', int(id)) # get comments from comments
table with matching id

126 if not comments:
127 return None
128 return dict(comments)
129
130
131
132 async def create_table_comments(self):
133 await self.execute(# create comments table
134 'CREATE TABLE IF NOT EXISTS comments (id serial

PRIMARY KEY, user_id int, news_id int, content
varchar(2000), date varchar(255))'

135)
136
137 async def get_comments(self):
138 comments = await self.fetch('SELECT * FROM comments

ORDER BY date DESC') # get all comments sorted by
date

139 if not comments:
140 return None
141 return comments
142
143 async def get_comments_by_news_id(self, news_id):
144 comments = await self.fetch('SELECT * FROM comments

WHERE news_id = $1 ORDER BY date DESC', int(news_id))
get comments matching a news article id

145 if not comments:
146 return None
147 return comments
148
149 async def create_comment(self, comment):
150 await self.execute(# create comment in comments table

using provided comment dictionary
151 'INSERT INTO comments (user_id, news_id, content,

date) VALUES ($1, $2, $3, $4)',

Arthur Robertson 103

Cryptica Social Media Analysis Application NEA

152 comment['user_id'], comment['news_id'], comment['
content'], comment['date']

153)
154 return dict(comment)
155
156 async def delete_comment(self, id):
157 await self.execute(# delete comment from comments table

with provided id
158 'DELETE FROM comments WHERE id = $1', int(id)
159)
160 return id
161
162 async def edit_comment(self, id, comment):
163 await self.execute('UPDATE comments SET user_id = $1,

news_id = $2, content = $3, date = $4 WHERE id = $5',
164 comment['user_id'], comment['news_id'],

comment['content'], comment['date'],
int(

165 id) # update comments table by id
with provided comment dictionary

166)
167 return comment
168 class Users(Table): # creates a new class called Users
169 def __init__(self, url):
170 super().__init__(url, 'users') # initializes the super

class with the url passed in and the table_name
passed in

171
172 async def get_profile(self, user_id, me=False):
173 if me: # if the user is the current user
174 user = await self.fetchrow('SELECT id, first_name,

last_name, email, admin FROM users WHERE id = $1'
, user_id) # get users info including email and
admin status from the table

175 else: # if the user is not the current user
176 user = await self.fetchrow('SELECT id, first_name,

last_name FROM users WHERE id = $1', user_id) #
just get basic user info (name) from the table

177 comments = await self.fetch('SELECT comments.id, news_id
, comments.content, comments.date, news.title FROM
comments INNER JOIN news ON comments.news_id = news.
id WHERE user_id = $1 ORDER BY date DESC', int(
user_id)) # fetch all comments from the table with
matching user id

178 if not comments:

Arthur Robertson 104

Cryptica Social Media Analysis Application NEA

179 return user
180 return {**user, 'comments': comments} # return the user

dictionary with the comments dictionary
181
182
183
184 async def get_user(self, id):
185 user = await self.fetchrow('SELECT * FROM users WHERE id

= $1', id) # select all users from the table with
matching id

186 if not user:
187 return None
188 return dict(user)
189
190 async def get_user_by_first_name(self, first_name):
191 user = await self.fetchrow('SELECT * FROM users WHERE

first_name = $1', first_name) # select all users from
the table with matching first name

192 if not user:
193 return None
194 return dict(user)
195
196 async def get_user_by_last_name(self, last_name):
197 user = await self.fetchrow('SELECT * FROM users WHERE

last_name = $1', last_name) # select all users from
the table with matching last name

198 if not user:
199 return None
200 return dict(user)
201
202 async def get_admins(self):
203 user = await self.fetch('SELECT * FROM users WHERE admin

= true') # select all users from the table with
admin status

204 if not user:
205 return None
206 return user
207
208 async def get_user_by_email(self, email):
209 user = await self.fetchrow('SELECT * FROM users WHERE

email = $1', email) # select all users from the table
with matching email

210 if not user:
211 return None
212 return dict(user)

Arthur Robertson 105

Cryptica Social Media Analysis Application NEA

213
214 async def edit_profile(self, id, user):
215 await self.execute('UPDATE users SET first_name = $1,

last_name = $2, email = $3, hashed_password = $4,
admin = $5 WHERE id = $6',

216 user['first_name'], user['last_name'],
user['email'],

217 hash_password(user['password']), user['
admin'], id

218) # update users table by id with
provided user dictionary

219 return user
220
221 async def create_user(self, user):
222 await self.execute(
223 'INSERT INTO users (first_name, last_name, email,

hashed_password, admin) VALUES ($1, $2, $3, $4,
$5)',

224 user['first_name'], user['last_name'], user['email'
],

225 hash_password(user['password']), user['admin'] #
create user in users table using provided user
dictionary

226)
227 return dict(user)
228
229 async def delete_user(self, id):
230 await self.execute(
231 'DELETE FROM users WHERE id = $1', id
232) # delete user from users table with provided id
233 return id
234
235
236 async def edit_user(self, id, user):
237 await self.execute('UPDATE users SET first_name = $1,

last_name = $2, email = $3, hashed_password = $4,
admin = $5 WHERE id = $6',

238 user['first_name'], user['last_name'],
user['email'],

239 hash_password(user['password']), user['
admin'], id

240) # update users table by id with
provided user dictionary

241 return user
242

Arthur Robertson 106

Cryptica Social Media Analysis Application NEA

243 async def create_table_users(self):
244 await self.execute(
245 'CREATE TABLE IF NOT EXISTS users (id serial PRIMARY

KEY, first_name varchar(255), last_name varchar
(255), email varchar(255), hashed_password
varchar(255), admin boolean)'

246) # create users table if it doesn't exist

api/db/schemas.py

The schemas.py file is used by FastAPI to validate data being passed to the program by
users.

1 from pydantic import BaseModel # pydantic is a lightweight
schema validation library for Python. it is used to validate
the data that is passed to the API.

2
3 class UserBase(BaseModel): # defines the UserBase class. this

class is used to validate the data that is passed to the API.
it inherits from the BaseModel class

4 email: str # defines the email field as a string
5 admin: bool = False # defines the admin field as a boolean.

this field is optional and defaults to false
6 first_name: str = None # defines the first_name field as a

string. this field is optional and defaults to None
7 last_name: str = None # defines the last_name field as a

string. this field is optional and defaults to None
8
9 class UserLogin(UserBase): # defines the UserLogin class

10 password: str # defines the password field as a string
11
12 class UserCreate(UserBase): # defines the UserCreate class
13 password: str # defines the password field as a string
14
15 class UserEdit(BaseModel): # defines the UserEdit class
16 password: str # defines the password field as a string
17 email: str = None # defines the email field as a string.

this field is optional and defaults to None
18 new_password: str = None # defines the new_password field as

a string. this field is optional and defaults to None
19 admin: bool = False # defines the admin field as a boolean.

this field is optional and defaults to false

Arthur Robertson 107

Cryptica Social Media Analysis Application NEA

20 first_name: str = None # defines the first_name field as a
string. this field is optional and defaults to None

21 last_name: str = None # defines the last_name field as a
string. this field is optional and defaults to None

22
23 class User(UserBase):
24 id: int # defines the id field as an integer
25
26 class TokenData(BaseModel):
27 email: str = None # defines the email field as a string.

this field is optional and defaults to None
28 permissions: str = "user" # defines the permissions field as

a string. this field is optional and defaults to "user"

api/utils/base64.py

This file contains a class for encoding and decoding base64.

1 class Encoding:
2 def add_zeros(self, binary): # defines the add_zeros method
3 if len(binary) % 8: # if the length of the binary string

is not divisible by 8
4 binary = '0' + binary # adds a zero to the beginning

of the binary string
5 return self.add_zeros(binary) # calls the method

again recursively
6 else: # otherwise
7 return binary # returns the binary string
8
9 class Base64(Encoding): # creates a class called Base64 that

inherits from Encoding
10
11 def __init__(self): # initializes the class
12 self.table = '

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
+/' # defines a table of allowed characters for
base64 encoding

13 self.__init__()
14
15 def encode(self, text): # defines the encode method
16 binary = '' # defines a variable to store the binary

representation of the text
17

Arthur Robertson 108

Cryptica Social Media Analysis Application NEA

18 for c in text: # iterates through the characters in the
text

19 binary += self.add_zeros(str(bin(ord(c)))[2:]) #
converts the character to its binary
representation and adds it to the binary string
with the add_zeros method

20 while len(binary) % 3: # while the length of the binary
string is not divisible by 3

21 binary += '00000000' # adds 8 zeros to the end of
the binary string

22 for i in range(6, len(binary) + int(len(binary) / 6), 7)
: # iterates through the binary string, starting at
the 6th position, and every 7th position

23 binary = binary[:i] + ' ' + binary[i:] # adds a
space to the binary string

24 binary = binary.split(' ') # splits the binary string
into a list of strings at the space

25 if '' in binary: # if the list contains an empty string
26 binary.remove('') # removes the empty string from

the list
27 base64 = '' # defines a variable to store the base64

representation of the text
28 for b in binary: # iterates through the binary strings

in the list
29 if b == '000000': # if the binary string is equal to

'000000'
30 base64 += '=' # adds an equals sign to the

base64 string
31 else: # otherwise
32 base64 += self.table[int(b, 2)] # converts the

binary string to an integer and adds the
character at the index of the integer to the
base64 string

33 return base64 # returns the base64 string
34
35 def decode(self, text): # defines the decode method
36 binary = '' # defines a variable to store the binary

representation of the text
37 for c in text: # iterates through the characters in the

text
38 if c == '=': # if the character is an equals sign
39 binary += '000000' # adds 6 zeros to the binary

string
40 else: # otherwise
41 binary += self.add_zeros(str(bin(self.table.

Arthur Robertson 109

Cryptica Social Media Analysis Application NEA

index(c)))[2:]) # converts the character to
its binary representation and adds it to the
binary string with the add_zeros method

42 for i in range(8, len(binary) + int(len(binary) / 8), 9)
: # iterates through the binary string, starting at
the 8th position, and every 9th position

43 binary = binary[:i] + ' ' + binary[i:] # adds a
space to the binary string

44 binary = binary.split(' ') # splits the binary string
into a list of strings at the space

45 if '' in binary: # if the list contains an empty string
46 binary.remove('') # removes the empty string from

the list
47 text = '' # defines a variable to store the text

representation of the text
48 for b in binary: # iterates through the binary strings

in the list
49 if not b == '00000000': # if the binary string is

not equal to '00000000'
50 text += chr(int(b, 2)) # converts the binary

string to an integer and adds the character
at the index of the integer to the text
string

51 return text # returns the text string

api/utils/sentiment.py

This class loads the sentiment analysis model trained on Google Collab, and makes it accessi-
ble through a class.

1 from keras.preprocessing.text import Tokenizer
2 from keras.preprocessing.sequence import pad_sequences
3 from keras.models import load_model
4
5 class Sentiment(Tokenizer): # class to predict sentiment of a

text, inherits from keras.preprocessing.text.Tokenizer
6 def __init__(self):
7 self.model = load_model("model.hdf5") # load model
8 super().__init__() # initialise class
9

10 def predict(self, text): # predict sentiment of text
11 sequence = self.texts_to_sequences([text]) # convert

text to sequence of tokens

Arthur Robertson 110

Cryptica Social Media Analysis Application NEA

12 t = pad_sequences(sequence, maxlen=200) # pad sequence
to 200 tokens

13 return self.model.predict(t) - 1 # return the models
prediction for the text as a number between 1 and -1

server/rsa/keygen.py

This file is responsible for generating RSA keys. It produces two pairs of numbers, for public
and private keys. I will need to use another program such as OpenSSL to convert to the two
pairs into the commonly used .PEM format, so that my API server can use them. How the
algorithm works is explained in the design section of this document.

1 import random
2
3
4 def miller_rabin(num):
5 s = num - 1 # s is the number minus 1
6 t = 0 # t is temporary variable set to 0
7
8 while s % 2 == 0: # while s is even, divide by 2
9 s = s // 2 # divide by 2

10 t = t + 1 # increment t
11
12 for x in range(40): # repeat 10 times, for 10 rounds
13 a = random.randint(2, num - 1) # generate a random

number between 2 and num - 1
14 v = (a ** s) % num # calculate v = (a^s) mod num
15 if v != 1: # if v is not 1,
16 i = 0 # set i to 0
17 while v != num - 1: # while v is not num - 1
18 if i == t: # if i is equal to t,
19 return False # return false (not prime)
20 else: # else
21 i = i + 1 # increment i
22 v = (v**2) % num # calculate v = (v^2) mod

num
23 return True # return true (prime)
24
25
26 def generate_prime(keysize):
27 while True: # loop until we get a prime
28 num = random.randint(2**(keysize-1),2**keysize) #

Arthur Robertson 111

Cryptica Social Media Analysis Application NEA

generate a number of keysize bits
29 if miller_rabin(num) == True: # if the number is prime,

return it
30 return num # keep on running loop until we generate

a prime
31
32
33 def egcd(a, b):
34 if a == 0: # in the case that a is 0, we need to return b,

0, 1
35 return (b, 0, 1) # b is the gcd, 0 is x, 1 is y
36 else:
37 gcd, y, x = egcd(b % a, a) # recursively call the

function, with the inputs b mod a, and a
38 return (gcd, x - (b // a) * y, y) # return a tuple using

some of the output of the egcd function. // is
integer division.

39
40 # greatest common divisor
41 def gcd(a, b):
42 return egcd(a, b)[0] # return the gcd of a and b
43
44 keysize = 8
45
46 p = generate_prime(keysize) # generate a prime of keysize 8
47 q = generate_prime(keysize) # generate a prime of keysize 8
48
49 n = p * q # n is the product of p and q
50
51 while True: # generate value of e until we get one that is

coprime with n
52 e = random.randint(2 ** (keysize - 1), 2 ** (keysize)) #

generate a random number between 2^(keysize - 1) and 2^(
keysize)

53 if gcd(e, (p - 1) * (q - 1)) == 1: # if the gcd of e and (p
- 1) * (q - 1) is 1,

54 break # break the loop
55
56 g, x, y = egcd(e, (p - 1) * (q - 1)) # use the extended

euclidean algorithm to find the gcd of e and (p - 1) * (q -
1)

57 d = x % ((p - 1) * (q - 1)) # d is the inverse of e mod (p - 1)
* (q - 1)

58
59

Arthur Robertson 112

Cryptica Social Media Analysis Application NEA

60 publickey = (n, e) # public key is n and e
61 privatekey = (n, d) # private key is n and d
62
63 print("public key:", publickey) # print the public key
64 print("private key:", privatekey) # print the private key

server/news/update.py

This file will be run periodically. It fetches new news articles from the News API, and adds
them to the database if they do not already exist. The News API imposes a rate limit, so it
should not be run too frequently. A few times a day will suffice.

1 import requests
2 import os
3 from dotenv import load_dotenv
4 import asyncio
5 import asyncpg
6 import nest_asyncio
7
8 load_dotenv() # load the .env file
9 nest_asyncio.apply() # required to run the main function

asynchronously
10
11 database_url = os.getenv("DATABASE_URL") # set database_url to

the environment variable DATABASE_URL
12 api_key = os.getenv("NEWS_API_KEY") # set api_key to the

environment variable NEWS_API_KEY
13
14 keywords = ['crypto','bitcoin','ethereum','dogecoin','

cryptocurrency','nft','blockchain','defi'] # list of keywords
to search the api for

15 api_url = 'https://newsapi.org/v2/everything?q=' + '%20OR%20'.
join(keywords) + '&apiKey=' + api_key + '&pageSize=100&page=1
' # api url made with the api key and the keywords

16
17 async def main(): # main function (asynchronous)
18 conn = await asyncpg.connect(database_url) # connect to the

database using the database_url
19 req = requests.get(api_url) # request the api url and save

the response to req variable
20
21 count = await conn.fetchval('SELECT COUNT(*) FROM news') #

store the number of rows in the news table in count

Arthur Robertson 113

Cryptica Social Media Analysis Application NEA

variable
22
23 for item in req.json()['articles']: # iterate through each

item in the articles array
24 news = { # convert the item to a dictionary
25 'publication': item['source']['name'],
26 'author': item['author'],
27 'title': item['title'],
28 'description': item['description'],
29 'url': item['url'],
30 'imageUrl': item['urlToImage'],
31 'date': item['publishedAt'],
32 'content': item['content']
33 }
34
35
36 n = await conn.fetch('SELECT * FROM news WHERE title =

$1', news['title']) # check if the news already
exists in the database with matching title

37 if not n: await conn.execute(# if the news does not
exist in the database, insert it using the news
dictionary

38 'INSERT INTO news (publication, author, title,
description, url, imageUrl, date, content) VALUES
($1, $2, $3, $4, $5, $6, $7, $8)',

39 news['publication'],
40 news['author'],
41 news['title'],
42 news['description'],
43 news['url'],
44 news['imageUrl'],
45 news['date'],
46 news['content']
47)
48
49
50
51
52 new_count = await conn.fetchval('SELECT COUNT(*) FROM news')

count again the number of rows in the news table
53 added = new_count - count # calculate the number of rows

added
54 print(added, "added.") # print the number of rows added
55 await conn.close() # close the connection to the database
56

Arthur Robertson 114

Cryptica Social Media Analysis Application NEA

57 asyncio.get_event_loop().run_until_complete(main()) # run the
main function in the event loop

server/sentiment/train.py

This file is responsible for creating the sentiment analysis model used by the application. This
will be ran once on Google Collab, and will produce a model that can be downloaded for use
by the API server.

1 import re
2 from gensim.utils import simple_preprocess
3 from sklearn.model_selection import train_test_split
4 import tensorflow as tf
5 import keras
6 import numpy as np
7 import pandas as pd
8 from keras.models import Sequential
9 from keras import layers

10 from keras.preprocessing.text import Tokenizer
11 from keras.preprocessing.sequence import pad_sequences
12 from keras.callbacks import ModelCheckpoint
13 from nltk.tokenize.treebank import TreebankWordDetokenizer
14 # imports
15
16 def create_dataset(path): # function to load the data and creata

dataframe with relevent columns
17 dataset = pd.read_csv(path) # load the data into a pandas

dataframe
18 dataset = dataset.dropna() # drop rows with missing values
19 dataset = dataset[['selected_text', 'sentiment']] # select

the relevant columns
20 return dataset # function to create the tokenizer
21
22 def create_labels(dataset): # function to create the labels
23 labels = np.array(dataset['sentiment']) # create a numpy

array of the labels from the sentiment column in the
dataframe

24 temp = [] # temporary variable
25 for i in range(len(labels)): # loop through the labels
26 if labels[i] == 'neutral': # if the label is neutral
27 temp.append(0) # append a 0
28 if labels[i] == 'negative': # if the label is negative
29 temp.append(1) # append a 1

Arthur Robertson 115

Cryptica Social Media Analysis Application NEA

30 if labels[i] == 'positive': # if the label is positive
31 temp.append(2) # append a 2
32 temp = np.array(temp) # convert the list to a numpy array
33 labels = tf.keras.utils.to_categorical(temp, 3, dtype="

float32") # convert the labels to categorical data with
keras utils

34 return labels # return the labels
35
36 def clean(data): # function to remove unnecessary characters

from the text using Regex
37 data = data.apply(lambda x: re.sub(r'http\S+', '', x)) #

removes all urls
38 data = data.apply(lambda x: re.sub(r'#\S+', '', x)) # remove

hashtags
39 data = data.apply(lambda x: re.sub(r'@\S+', '', x)) #

removes @mentions
40 data = data.apply(lambda x: re.sub(r'[^\w\s]', '', x)) #

remove punctuation
41 data = data.apply(lambda x: re.sub(r'\s+', ' ', x)) # remove

multiple spaces
42 data = data.apply(lambda x: re.sub(r"\'", "", x)) # removes

single quotes
43 return data
44
45 def data_to_words(dataset): # to return a list of lists of words
46 sentences_temp = dataset['selected_text'] # get the selected

text column
47 temp = clean(sentences_temp) # clean the text using the

clean function
48 temp = temp.values.tolist() # convert the dataframe to a

list
49 for i in temp: # loop through the list
50 yield(simple_preprocess(str(i), deacc=True)) # return a

list of lists of words
51
52 def form_sentences(data_words): # function to form the sentences
53 temp = [] # temporary variable
54 for i in range(len(data_words)): # loop through the data
55 temp.append(TreebankWordDetokenizer().detokenize(

data_words[i])) # append the detokenized text to the
list

56 return np.array(temp) # return the list as a numpy array
57
58 def create_tokenizer(data): # function to create the tokenizer
59 tokenizer = Tokenizer(num_words=5000) # create a tokenizer

Arthur Robertson 116

Cryptica Social Media Analysis Application NEA

with 5000 words
60 tokenizer.fit_on_texts(data) # fit the tokenizer on the data
61 return tokenizer # return the tokenizer
62
63 def create_sequences(tokenizer, data): # function to create the

sequences
64 return tokenizer.texts_to_sequences(data) # return the

sequences
65
66 def create_tweets(sequence): # function to create the tweets
67 return pad_sequences(sequence, maxlen=200)
68
69 class LSTM(Sequential): # class to create the LSTM model
70 def __init__(self, max_words, max_len, tokenizer): #

initialise the model
71 self.max_words = max_words # set the max words
72 self.max_len = max_len # set the max length
73 self.tokenizer = tokenizer # set the tokenizer
74 super().__init__() # call the parent class
75 self.add(layers.Embedding(self.max_words, 40,

input_length=self.max_len)) # add an embedding layer
76 self.add(layers.Bidirectional(layers.LSTM(20,dropout

=0.6))) # add a bidirectional LSTM layer
77 self.add(layers.Dense(3,activation='softmax')) # add a

dense layer
78 self.compile(optimizer='rmsprop',loss='

categorical_crossentropy', metrics=['accuracy']) #
compile the model

79
80 def create_checkpoint(self): # function to create the

checkpoint
81 self.checkpoint = ModelCheckpoint("model.hdf5", monitor=

'val_accuracy', verbose=1,save_best_only=True, mode='
auto', period=1,save_weights_only=False) # create a
checkpoint

82
83 def train(self, trainx, trainy, epochs=70): # function to

train the model
84 return self.fit(trainx, trainy, epochs=epochs,

validation_data=(testx, testy),callbacks=[self.
checkpoint]) # train the model

85
86 def load_model(self, path): # function to load the model
87 keras.models.load_model(path) # load the model
88

Arthur Robertson 117

Cryptica Social Media Analysis Application NEA

89 def evaluate_self(self, testx, testy): # function to
evaluate the model

90 return self.evaluate(testx, testy, verbose=2) # evaluate
the model

91
92 def predict_sentiment(self, text): # function to predict the

sentiment
93 sequence = self.tokenizer.texts_to_sequences([text]) #

create the sequence
94 temp = pad_sequences(sequence, maxlen=self.max_len) #

pad the sequence
95 return self.predict(temp) # predict the sentiment
96
97 dataset = create_dataset('dataset.csv') #
98 data_words = list(data_to_words(dataset) # create a list of

lists of words
99 labels = create_labels(dataset) # create the labels

100 data = form_sentences(data_words) # form the sentences
101 tokenizer = create_tokenizer(data) # create the tokenizer
102 sequences = create_sequences(tokenizer, data) # create the

sequences
103 tweets = create_tweets(sequences) # create the tweets
104 trainx, testx, trainy, testy = train_test_split(tweets, labels,

random_state=1) # split the data into training and testing
sets

105
106 model = LSTM(max_words=5000, max_len=200, tokenizer=tokenizer) #

create the model
107 model.create_checkpoint() # create the checkpoint
108 model.train(trainx, trainy) # train the model
109 loss, accuracy = model.evaluate_self(testx, testy) # evaluate

the model

client/pages/account/index.js

This file is the account homepage. Once users are logged in they will be directed here.

1 import useSWR from 'swr';
2 import Auth from '../../services/auth';
3 import WelcomeBanner from '../../components/account/welcome';
4 import { useRouter } from 'next/router';
5 import Loading from '../../components/loading';
6 import Comments from '../../components/comments';

Arthur Robertson 118

Cryptica Social Media Analysis Application NEA

7
8 function Dashboard() {
9 const router = useRouter(); // this creates an instance of the

router, which allows manipulation of the url
10 const auth = new Auth(); // this creates an instance of the

auth service
11 const { data, loading, error } = useSWR(['/users/me', true],

auth.fetcher); // this fetches the user data from the api,
with the fetcher function

12 if (error || loading) { // if there is an error or the data is
loading, redirect to the login page and display the
loading component

13 router.push('/login'); // redirect to the login page
14 return <Loading />; // display the loading component
15 }
16 if (data && data.first_name) { // if there is data and it

contains a first name, display the welcome banner
17 return (
18 <>
19 <WelcomeBanner line1={'Welcome back, ' + data.first_name

+ ' ' + data.last_name} /> // display the welcome
banner

20
21 <p className="">Email: {data.email}</p> // display the

user's email
22 <button // button to logout the user
23 onClick={() => { // on click, logout the user
24 auth.deleteToken(); // delete the authentication

token from local storage
25 router.reload(); // reload the page
26 }}
27 type="button"
28 className="mt-5 bg-complementary-800 text-white

rounded px-2 py-1 transition duration-200 ease
select-none hover:bg-complementary-900 focus:
outline-none focus:shadow-outline"

29 >
30 Logout
31 </button>
32 <div className="mt-8">
33 {data.comments && (// if the user has comments,

display the comments
34 <>
35 <h3 className="text-2xl font-semibold">Your

Comments</h3>

Arthur Robertson 119

Cryptica Social Media Analysis Application NEA

36 <Comments comments={data.comments} /> // display
the comments

37 </>
38)}
39 </div>
40 </>
41);
42 } else {
43 return <Loading />;
44 }
45 }
46
47 export default Dashboard;

Figure 25: Screenshot of the accounts page

Arthur Robertson 120

Cryptica Social Media Analysis Application NEA

client/pages/tweet-analysis/index.js

This page is used for analysing specific tweets from a user. By default, it has an input field for
the user to enter a twitter handle, and a specified cryptocoin. Then after submitting a handle,
it displays a list of that users tweets that mentions the selected cryptocurrency. The user is
then free to click on any of the tweets on the side which will then bring up a graph showing
the price of the cryptocurrency during the tweet.

1 import Auth from '../../services/auth';
2 import { useEffect, useState } from 'react';
3 import Loading from '../../components/loading';
4 import OHCL from '../../components/analysis/ohcl';
5 import useUser from '../../services/user';
6 import Tweet from '../../components/analysis/tweet';
7
8 export default function Analysis() {
9 const auth = new Auth(); // this creates an instance of the

auth service
10 const [data, setData] = useState(); // this creates a state

variable for the data
11 const [price, setPrice] = useState(); // this creates a state

variable for the price
12 const [index, setIndex] = useState(0); // this creates a state

variable for the index
13 const [prevIndex, setPrevIndex] = useState(); // this creates

a state variable for the previous index with default value
0

14 const [loading, setLoading] = useState(false); // this creates
a state variable for the loading state

15 const [coin, setCoin] = useState(); // this creates a state
variable for the coin

16
17 function convertDate(date) { // this function converts the

date to UNIX timestamp
18 const dateArray = date.split(' '); // split the date into an

array
19 const dateString = dateArray[0];
20 const timeString = dateArray[1];
21 const dateArray2 = dateString.split('-'); //
22 const timeArray = timeString.split(':');
23 const year = parseInt(dateArray2[0]);
24 const month = parseInt(dateArray2[1]);
25 const day = parseInt(dateArray2[2]);

Arthur Robertson 121

Cryptica Social Media Analysis Application NEA

26 const hour = parseInt(timeArray[0]);
27 const minute = parseInt(timeArray[1]);
28 const second = parseInt(timeArray[2]);
29 const d = new Date(year, month - 1, day, hour, minute,

second); // create a new date object with the date and
time from the previous steps

30 return d.getTime() / 1000; // return the UNIX timestamp
31 }
32
33 const { user } = useUser(); // this uses the userUser hook to

get the user data
34
35 const submitForm = (form) => { // this function submits the

form
36 form.preventDefault(); // this disables the default form

submission behavior, which is to refresh the page upon
form submission

37 setLoading(true); // set the loading state to true
38 setCoin(form.target.coin.value); // set the coin state to

the value of the coin input
39 setIndex(); // set the index state to 0
40 auth // this fetches the data from the api
41 .fetcher(// this fetches the data from the api
42 `/twitter/search?username=${form.target.twitterhandle.

value}&coin=${form.target.coin.value}`, // this is
the url to fetch the data from

43 true
44)
45 .then((res) => { // this is the response from the api
46 setData(res); // set the data state to the response
47 })
48 .then(() => { // this is the response from the api
49 setLoading(false); // set the loading state to false
50 });
51 };
52
53 const convert = (coin) => { // this function converts the coin

to ticker format
54 switch (coin) { // switch on the coin
55 case 'Bitcoin':
56 return 'BTCUSDT';
57 case 'Ethereum':
58 return 'ETHUSDT';
59 case 'Doge':
60 return 'DOGEUSDT';

Arthur Robertson 122

Cryptica Social Media Analysis Application NEA

61 case 'Litecoin':
62 return 'LTCUSDT';
63 case 'Cardano':
64 return 'ADAUSDT';
65 }
66 };
67
68 useEffect(() => { // this is the effect to run when the

component mounts
69 if (!user) { // if the user is not logged in
70 return; // return nothing
71 }
72
73 if (data && data[0] && index !== prevIndex && data[0][index]

&& data[0][index].datetime) { // if the data is not
empty and the index is not the same as the previous index
and the data has a datetime

74 setLoading(true); // set the loading state to true
75 auth
76 .fetcher(`/crypto/${convert(coin)}/${convertDate(data

[0][index].datetime)}`) // this fetches the price
from the api

77 .then((res) => { // this is the response from the api
78 setPrice(res); // set the price state to the response
79 })
80 .then(() => {
81 setLoading(false); // set the loading state to false
82 });
83 setPrevIndex(index); // set the previous index state to

the index
84 }
85 }, [user, data, index]); // this is the effect to run when the

component mounts
86
87 if (!user) { // if the user is not logged in
88 return 'You need to login to access this page!'; // return

the message
89 }
90
91 return (// this is the default return statement
92 <>
93 <div className="flex px-5">
94 <div className="h-1/2 top-0 sticky w-2/3 flex mr-6">
95 <div className="flex-1">
96 <div className="py-5 text-6xl text-center font-

Arthur Robertson 123

Cryptica Social Media Analysis Application NEA

semibold lg:text-left transform">
97 ANALYSIS
98 </div>
99 <form onSubmit={submitForm} className="bg-

complementary-100 p-5 mb-6 space-x-5 flex">
100 <div className="relative inline-flex self-center

flex-initial">
101 <svg
102 className="text-white bg-primary-700 absolute

top-0 right-0 m-2 pointer-events-none p-2
rounded"

103 xmlns="http://www.w3.org/2000/svg"
104 width="40px"
105 height="40px"
106 viewBox="0 0 38 22"
107 version="1.1"
108 >
109 <g stroke="none" strokeWidth="1" fill="none"

fillRule="evenodd">
110 <g
111 transform="translate(-539.000000,

-199.000000)"
112 fill="#ffffff"
113 fillRule="nonzero"
114 >
115 <g
116 id="Icon-/-ArrowRight-Copy-2"
117 transform="translate(538.000000,

183.521208)"
118 >
119 <polygon
120 id="Path-Copy"
121 transform="translate(20.000000,

18.384776) rotate(135.000000)
translate(-20.000000, -18.384776) "

122 points="33 5.38477631 33 31.3847763 29
31.3847763 28.999 9.38379168 7

9.38477631 7 5.38477631"
123 />
124 </g>
125 </g>
126 </g>
127 </svg>
128 <select
129 id="coin"

Arthur Robertson 124

Cryptica Social Media Analysis Application NEA

130 className="text-xl font-bold rounded border-2
border-primary-700 text-neutral-600 h-14 w
-44 pl-5 pr-10 bg-white focus:outline-none
appearance-none"

131 >
132 <option>Bitcoin</option>
133 <option>Ethereum</option>
134 <option>Doge</option>
135 <option>Litecoin</option>
136 <option>Cardano</option>
137 </select>
138 </div>
139 <input
140 id="twitterhandle"
141 type="text"
142 required
143 placeholder="elonmusk"
144 className="flex-auto text-xl font-bold rounded

border-2 border-primary-700 text-neutral-600
h-14 pl-5 pr-10 bg-white focus:border-neutral
-400 focus:outline-none appearance-none"

145 />
146 <button
147 type="submit"
148 className="text-xl font-bold rounded text-white

h-14 px-8 bg-primary-800 hover:bg-primary-900
focus:outline-none appearance-none"

149 >
150 Submit
151 </button>
152 </form>
153
154 {!loading && price && (// if the loading state is

false and the price state is not empty
155 <>
156 <div className="py-3 text-4xl text-center lg:

text-left font-medium transform">
157 {coin} at {data[0][index].datetime}
158 </div>
159 <div className="bg-neutral-100 h-96">
160 {price && price[29] && <OHCL data={price} />}
161 </div>
162 <div className="bg-neutral-100 p-5 my-8 h-full">
163 <div className="flex flex-col">
164 <div className="flex-1">

Arthur Robertson 125

Cryptica Social Media Analysis Application NEA

165 <div className="text-2xl text-center lg:
text-left font-medium transform">

166 {coin}
167 </div>
168 <div className="text-xl text-center lg:

text-left font-medium transform">
169 {data[0][index].datetime}
170 </div>
171 <div className="text-xl text-center lg:

text-left font-medium transform">
172 {data[0][index].tweet}
173 </div>
174 <div className="text-xl text-center lg:

text-left font-medium transform">
175 Sentiment: {data[0][index].sentiment}
176 </div>
177 <div className="text-xl text-center lg:

text-left font-medium transform">
178 {(-(price[29][1] - price[34][1]) / price

[29][1]) * 100}%
179 </div>
180 </div>
181 </div>
182 </div>
183 </>
184)}
185 {loading && <Loading />}
186 </div>
187 </div>
188
189 <div className="flex-grow w-1/3">
190 <h2 className="pb-2 pt-8 text-4xl leading-tight md:

text-4xl">Tweets</h2>
191
192 {data && data[0] && !data[0][0] && 'No results found'

/* if the data state is not empty and the first
index is empty, return the message */}

193 {data &&
194 data[0] &&
195 data[0].map((item, key) => { // this is the map

function to map the data state to the tweets
196 return (
197 <button
198 key={key}
199 className="hover:bg-complementary-100

Arthur Robertson 126

Cryptica Social Media Analysis Application NEA

appearance-none w-full text-left border
border-neutral-300 dark:border-neutral-800
px-6 py-4 my-4 transition duration-500 ease
-in-out transform hover:-translate-y-1
hover:scale-105"

200 onClick={() => setIndex(key)}
201 >
202 <Tweet user={data[1]} tweet={item} />
203 </button>
204);
205 })}
206 </div>
207 </div>
208 </>
209);
210 }

Figure 26: The page when the user first enters it, with the input fields.

Arthur Robertson 127

Cryptica Social Media Analysis Application NEA

Figure 27: Select Option allowing the choice of Cryptocurrency

Arthur Robertson 128

Cryptica Social Media Analysis Application NEA

Figure 28: Full page with tweet selected from list of side.

client/pages/coin/index.js

This page contains a leaderboard of the top 50 coins ordered by marketcap, with data fetched
from an external API.

1 import TableItem from '../../components/coin/tableitem';
2 import { useState, useEffect } from 'react';
3 import axios from 'axios';
4 import Loading from '../../components/loading';
5 const Coins = () => {
6 const [data, setData] = useState(); // this creates a state

variable for the data
7 const [loading, setLoading] = useState(true); // this creates

a state variable for the loading state
8
9 const formatNumber = (num) => { // this function formats the

number to a currency format

Arthur Robertson 129

Cryptica Social Media Analysis Application NEA

10 if (num >= 1000000000000) { // 1 trillion to T
11 return (num / 1000000000000).toFixed(1) + 'T';
12 } else if (num >= 1000000000) { // 1 billion to B
13 return (num / 1000000000).toFixed(1) + 'B';
14 } else if (num >= 1000000) { // 1 million to M
15 return (num / 1000000).toFixed(1) + 'M';
16 } else if (num >= 1000) { // 1 thousand to K
17 return (num / 1000).toFixed(1) + 'K';
18 } else { // less than 1 thousand
19 return num; // return the number
20 }
21 };
22
23 useEffect(() => { // this is the effect to fetch the data
24 setLoading(true); // set the loading state to true
25 axios
26 .get(// this fetches the data from the api
27 'https://api.coingecko.com/api/v3/coins/markets?

vs_currency=usd&order=market_cap_desc&per_page=50&
page=1&sparkline=false&price_change_percentage=24h'

28) // this is the url to fetch the data from
29 .then((res) => setData(res.data)) // this is the response

from the api
30 .then(() => setLoading(false))
31 .catch((err) => err);
32 }, []);
33 if (loading || !data) return <Loading />; // if the loading

state is true or the data state is undefined, return the
loading component

34 return (
35 <div className="px-10 ">
36 <div className="py-5 space-y-2">
37 <h1 className="text-5xl">Coin Leaderboard</h1>
38 <p>
39 This page contains a list of the top 50 coins, ordered

by marketcap. Click a coin to view
40 more info.
41 </p>
42 </div>
43
44 <div className="">
45 <table className="w-full text-left">
46 <thead>
47 <tr className="text-neutral-400">
48 <th className="font-normal px-3 pt-0 pb-3 border-b border-

Arthur Robertson 130

Cryptica Social Media Analysis Application NEA

neutral-200 dark:border-neutral-800">
49 #
50 </th>
51 <th className="font-normal px-3 pt-0 pb-3 border-b border-

neutral-200 dark:border-neutral-800">
52 Coin
53 </th>
54 <th className="font-normal px-3 pt-0 pb-3 border-b border-

neutral-200 dark:border-neutral-800">
55 Price
56 </th>
57 <th className="font-normal px-3 pt-0 pb-3 border-b border-

neutral-200 dark:border-neutral-800">
58 24h Change
59 </th>
60 <th className="font-normal px-3 pt-0 pb-3 border-b border-

neutral-200 dark:border-neutral-800">
61 24h High
62 </th>
63 <th className="font-normal px-3 pt-0 pb-3 border-b border-

neutral-200 dark:border-neutral-800">
64 24h Low
65 </th>
66 <th className="font-normal px-3 pt-0 pb-3 border-b border-

neutral-200 dark:border-neutral-800">
67 Market Cap
68 </th>
69 </tr>
70 </thead>
71 {data.map((item) => (// this is the map function to loop

through the data and create the table with each of the
items in the data

72 <TableItem // this is the table item component. data is
passed in as props from the map function

73 key={item.market_cap_rank}
74 id={item.id}
75 image={item.image}
76 rank={item.market_cap_rank}
77 name={item.name}
78 symbol={item.symbol.toUpperCase()}
79 price={item.current_price}
80 change={item.price_change_percentage_24h}
81 high={item.high_24h}
82 low={item.low_24h}
83 marketcap={formatNumber(item.market_cap)}

Arthur Robertson 131

Cryptica Social Media Analysis Application NEA

84 />
85))}
86 </table>
87 </div>
88 </div>
89);
90 };
91
92 export default Coins;

Figure 29: Coin Leaderboard Page Screenshot

client/page/coin/[id].js

This page is for displaying advanced details about a specific coin. It is accessible from the
coins leaderboard page, and fetches data from an external api.

1 import { useRouter } from 'next/router';
2 import RelatedNews from '../../components/coin/relatednews';

Arthur Robertson 132

Cryptica Social Media Analysis Application NEA

3 import Graph from '../../components/coin/graph';
4 import axios from 'axios';
5 import { useEffect, useState } from 'react';
6 import Loading from '../../components/loading';
7 import Auth from '../../services/auth';
8 const Coin = () => {
9 const router = useRouter(); // this creates an instance of the

router service
10 const [data, setData] = useState(); // this creates a state

variable for the data
11 const [loading, setLoading] = useState(true); // this creates

a state variable for the loading state
12 const [fav, setFav] = useState(false); // this creates a state

variable for the favorite state
13 const [time, setTime] = useState('7d'); // this creates a

state variable for the time
14 const [news, setNews] = useState(); // this creates a state

variable for the news
15 const auth = new Auth(); // this creates an instance of the

auth service
16
17 const formatNumber = (num) => { // this function formats the

number
18 if (num >= 10 ** 12) {
19 return (num / 10 ** 12).toFixed(1) + 'T';
20 } else if (num >= 10 ** 9) {
21 return (num / 10 ** 9).toFixed(1) + 'B';
22 } else if (num >= 10 ** 6) {
23 return (num / 10 ** 6).toFixed(1) + 'M';
24 } else if (num >= 10 ** 3) {
25 return (num / 10 ** 3).toFixed(1) + 'K';
26 } else {
27 return num;
28 }
29 };
30
31 const buttonClick = () => { // this is the function to change

the fav variable state to the opposite value
32 setFav(!fav);
33 };
34
35 useEffect(() => { // this is the effect to fetch the data
36 async function fetchNews() { // this is the function to

fetch the news
37 return await auth.poster('/news/search', { // this is the

Arthur Robertson 133

Cryptica Social Media Analysis Application NEA

url to fetch the data from
38 phrase: router.query.coin // this is the post body to

send to the api. router.query.coin is the coin name
which is passed in from the url

39 });
40 }
41
42 setLoading(true); // set the loading state to true
43 if (!router.query.coin) { // if the coin is undefined,

redirect to the home page
44 return; // return the function
45 }
46 axios // this is the axios instance to fetch the data
47 .get(// this fetches the data from the api
48 `https://api.coingecko.com/api/v3/coins/${router.query.

coin}?localization=false&tickers=false&community_data
=false&developer_data=false&sparkline=false`

49) // this is the url to fetch the data from
50 .then((res) => setData(res.data)) // this sets the data

state variable to the data
51 .then(() => setLoading(false)) // this sets the loading

state to false
52 .catch((err) => err); // this catches any errors
53 fetchNews().then((res) => setNews(res.data)); // this

fetches the news
54 }, [router.query.coin]); // this is the dependency array,

which is the coin query
55
56 if (router.isFallback || !router.query.coin || !data ||

loading) { // return loading in the following conditions
57 return <Loading />;
58 }
59 return (// return the following
60 <>
61 <div className="flex px-10">
62 <div className={news ? 'pt-10 w-full lg:w-3/4' : 'pt-10

w-full'}>
63 <div className="space-x-4">
64 {data.name}</

span>
65 <span className="text-4xl font-medium text-neutral

-400">
66 {data.symbol.toUpperCase()}
67
68 </div>

Arthur Robertson 134

Cryptica Social Media Analysis Application NEA

69 <div className="flex bg-neutral-50 mt-5 font-light">
70 <div className="flex-auto p-5">
71 <h3 className="text-sm">PRICE</h3>
72 <h2 className="text-4xl font-medium">$ {data.

market_data.current_price.usd}</h2>
73 </div>
74 <div className="flex-auto p-5">
75 <h3 className="text-sm">24HR PRICE CHANGE</h3>
76 <h2 className="text-2xl text-green-500 font-medium

">
77 {Math.round(100 * data.market_data.

price_change_percentage_24h) / 100}% {/* this
is the percent change */}

78 </h2>
79 </div>
80 <div className="flex-auto p-5">
81 <h3 className="text-sm">MARKET CAP</h3>
82 <h2 className="text-2xl font-medium">
83 ${formatNumber(data.market_data.market_cap.usd)}

{/* this is the market cap from the API*/}
84 </h2>
85 </div>
86 <div className="flex-auto p-5">
87 <h3 className="text-sm">24HR MARKET CAP CHANGE</h3

>
88 <h2 className="text-2xl font-medium text-green-500

">
89 {Math.round(
90 100 * data.market_data.

market_cap_change_percentage_24h_in_currency
.usd

91) / 100} {/* this is the market cap change from
the API */}

92 %
93 </h2>
94 </div>
95
96 <button
97 onClick={buttonClick}
98 className="flex-none p-2 text-center text-md bg-

red-100 order-last hover:bg-red-200 w-16"
99 >

100 <svg viewBox="0 0 512 512">
101 {fav && (
102 <path

Arthur Robertson 135

Cryptica Social Media Analysis Application NEA

103 fill="red"
104 d="M376,30c

-27.783,0-53.255,8.804-75.707,26.168c
-21.525,16.647-35.856,37.85-44.293,53.268

105 c-8.437-15.419-22.768-36.621-44.293-53.268C189
.255,38.804,163.783,30,136,30C58
.468,30,0,93.417,0,177.514

106 c0,90.854,72.943,153.015,183.369,247.118c18
.752,15.981,40.007,34.095,62.099,53.414C248
.38,480.596,252.12,482,256,482

107 s7.62-1.404,10.532-3.953c22
.094-19.322,43.348-37.435,62.111-53.425C439
.057,330.529,512,268.368,512,177.514

108 C512,93.417,453.532,30,376,30z"
109 />
110)}
111 <path
112 d="M474.644,74.27C449

.391,45.616,414.358,29.836,376,29.836c
-53.948,0-88.103,32.22-107.255,59.25

113 c-4.969,7.014-9.196,14.047-12.745,20.665c
-3.549-6.618-7.775-13.651-12.745-20.665c
-19.152-27.03-53.307-59.25-107.255-59.25

114 c-38.358,0-73.391,15.781-98.645,44.435C13
.267,101.605,0,138.213,0,177.351c0
,42.603,16.633,82.228,52.345,124.7

115 c31.917,37.96,77.834,77.088,131.005,122.397c19
.813,16.884,40.302,34.344,62.115,53.429l0
.655,0.574

116 c2.828,2.476,6.354,3.713,9.88,3.713s7
.052-1.238,9.88-3.713l0.655-0.574c21
.813-19.085,42.302-36.544,62.118-53.431

117 c53.168-45.306,99.085-84.434,131.002-122.395C495
.367,259.578,512,219.954,512,177.351

118 C512,138.213,498.733,101.605,474.644,74.27z M309
.193,401.614c
-17.08,14.554-34.658,29.533-53.193,45.646

119 c-18.534-16.111-36.113-31.091-53.196-45.648C98
.745,312.939,30,254.358,30,177.351c0
-31.83,10.605-61.394,29.862-83.245

120 C79.34,72.007,106.379,59.836,136,59.836c41
.129,0,67.716,25.338,82.776,46.594c13
.509,19.064,20.558,38.282,22.962,45.659

121 c2.011,6.175,7.768,10.354,14.262,10.354c6
.494,0,12.251-4.179,14.262-10.354c2

Arthur Robertson 136

Cryptica Social Media Analysis Application NEA

.404-7.377,9.453-26.595,22.962-45.66
122 c15.06-21.255,41.647-46.593,82.776-46.593c29

.621,0,56.66,12.171,76.137,34.27C471

.395,115.957,482,145.521,482,177.351
123 C482,254.358,413.255,312.939,309.193,401.614z"
124 />
125 </svg>
126 </button>
127 </div>
128 <div className="w-full bg-neutral-50 mt-8 h-96">
129 <Graph coin={router.query.coin} time={time} /> {/*

this is the graph component */}
130 </div>
131 {data.description.en && (
132 <div
133 className="w-full bg-neutral-50 mt-8 p-4"
134 dangerouslySetInnerHTML={{ __html: data.

description.en }} {/* this is the description
from the API */}

135 />
136)}
137 </div>
138 {news && (
139 <div className="pl-10 h-1/2 top-0 sticky w-1/4 hidden

lg:flex">
140 <RelatedNews news={news} />
141 </div>
142)}
143 </div>
144 </>
145);
146 };
147
148 export default Coin;

Arthur Robertson 137

Cryptica Social Media Analysis Application NEA

Figure 30: Bitcoin’s page

client/page/account-analysis/index.js

This file is for analysising users twitters account on a general level. It has a field for inputting a
user’s twitter handle and for specifying a quantity of tweets to analyse. It produces several
graphs and charts.

1 import useUser from '../../services/user';
2 import Auth from '../../services/auth';
3 import { useState } from 'react';
4 import Heatmap from '../../components/admin/heatmap';
5 import Piechart from '../../components/admin/piechart';
6 import Profile from '../../components/admin/profile';
7
8 const Admin = () => {
9 const { user, loading } = useUser(); // this uses the userUser

hook to get the user data
10 const auth = new Auth(); // this creates an instance of the

Arthur Robertson 138

Cryptica Social Media Analysis Application NEA

auth service
11 const [data, setData] = useState(); // this creates a state

variable for the data
12 const [load, setLoading] = useState(false); // this creates a

state variable for the loading state
13
14 if (!user && !loading) { // if the user is not logged in and

the loading state is false
15 return <div>Unauthorised</div>;
16 }
17
18 const submitForm = (form) => { // this function submits the

form
19 form.preventDefault(); // this disables the default form

submission behavior, which is to refresh the page upon
form submission

20 setLoading(true); // set the loading state to true
21 auth // this fetches the data from the api
22 .fetcher(
23 `/twitter/search?username=${form.target.handle.value}&

limit=${form.target.count.value}`,
24 true // this is the url to fetch the data from
25)
26 .then((res) => {
27 setData(res);
28 })
29 .then(() => {
30 setLoading(false);
31 });
32 };
33
34 return (
35 <div className={'bg-neutral-50 ' + (load ? 'cursor-wait' : '

')}>
36 <div className="grid justify-items-center py-5">
37 <form onSubmit={submitForm} className="bg-complementary

-100 p-5 space-x-5 flex w-3/4 ">
38 <div className="relative inline-flex self-center flex-

initial">
39 <svg
40 className="text-white bg-primary-700 absolute top

-0 right-0 m-2 pointer-events-none p-2 rounded"
41 xmlns="http://www.w3.org/2000/svg"
42 width="40px"
43 height="40px"

Arthur Robertson 139

Cryptica Social Media Analysis Application NEA

44 viewBox="0 0 38 22"
45 version="1.1"
46 >
47 <g stroke="none" strokeWidth="1" fill="none"

fillRule="evenodd">
48 <g
49 transform="translate(-539.000000, -199.000000)

"
50 fill="#ffffff"
51 fillRule="nonzero"
52 >
53 <g id="Icon-/-ArrowRight-Copy-2" transform="

translate(538.000000, 183.521208)">
54 <polygon
55 id="Path-Copy"
56 transform="translate(20.000000, 18.384776)

rotate(135.000000) translate
(-20.000000, -18.384776) "

57 points="33 5.38477631 33 31.3847763 29
31.3847763 28.999 9.38379168 7
9.38477631 7 5.38477631"

58 />
59 </g>
60 </g>
61 </g>
62 </svg>
63 <select
64 id="count"
65 className="text-xl font-bold rounded border-2

border-primary-700 text-neutral-600 h-14 w-52
pl-5 pr-10 bg-white focus:outline-none
appearance-none"

66 >
67 <option value="100">100 Tweets</option>
68 <option value="250">250 Tweets</option>
69 <option value="500">500 Tweets</option>
70 <option value="1000">1000 Tweets</option>
71 <option value="2000">2000 Tweets</option>
72 </select>
73 </div>
74 <input
75 id="handle"
76 type="text"
77 required
78 placeholder="elonmusk"

Arthur Robertson 140

Cryptica Social Media Analysis Application NEA

79 className="flex-auto text-xl font-bold rounded
border-2 border-primary-700 text-neutral-600 h-14
pl-5 pr-10 bg-white focus:border-neutral-400

focus:outline-none appearance-none"
80 />
81 <button
82 type="submit"
83 disabled={load}
84 className={
85 'text-xl font-bold rounded text-white h-14 px-8 bg

-primary-800 hover:bg-primary-900 focus:outline
-none appearance-none' +

86 (load ? ' opacity-50 cursor-not-allowed' : '')
87 }
88 >
89 Submit
90 </button>
91 </form>
92 </div>
93 {data && data[0] && (
94 <>
95 <div className="flex flex-wrap overfull-hidden">
96 <div className="bg-green-50 w-full lg:w-2/3">
97 <Profile data={data} />
98 </div>
99 <div className="w-full lg:w-1/3">

100 <div className="bg-red-50 pt-5 pb-2 px-2">
101 <h1 className="text-center text-2xl font-bold

text-neutral-800">Devices Used</h1>
102 </div>
103 <div className="bg-red-50 h-72 px-2">
104 <Piechart
105 data={data[0].map((tweet) => {
106 return tweet.source; // this maps the data

to the source property
107 })}
108 />
109 </div>
110 </div>
111 </div>
112 <div className="bg-complementary-50 py-5">
113 <h1 className="text-center text-2xl font-bold text-

neutral-800">
114 Tweets at times across the week (GMT)
115 </h1>

Arthur Robertson 141

Cryptica Social Media Analysis Application NEA

116 </div>
117 <div className="bg-complementary-50 h-96">
118 <Heatmap
119 data={data[0].map((tweet) => {
120 return tweet.datetime; // this maps the data to

the datetime property
121 })}
122 />
123 </div>
124 </>
125)}
126 </div>
127);
128 };
129
130 export default Admin;

Figure 31: The input field

Arthur Robertson 142

Cryptica Social Media Analysis Application NEA

Figure 32: The analysis page after Bill Gate’s Twitter account is supplied in the input field

client/pages/login/index.js

This page allows the user to login to the application

1 import { Field, Form, Formik } from 'formik';
2 import Link from 'next/link';
3 import { useState } from 'react';
4 import Auth from '../../services/auth';
5 import useUser from '../../services/user';
6 import { useRouter } from 'next/router';

Arthur Robertson 143

Cryptica Social Media Analysis Application NEA

7
8 function Login(props) {
9 const [reply, setReply] = useState(); // this creates a state

variable for the reply from the API
10 const [button, setButton] = useState('Log In'); // this

creates a state variable for the button text
11 const { user, loading, error } = useUser(); // this sets user,

loading, and error from the user service
12 const Router = useRouter(); // this creates an instance of the

router service
13 const auth = new Auth(); // this creates an instance of the

auth service
14 if (user) { // if the user is logged in already
15 Router.push('/' + (Router.query.redirect || 'account')); //

redirect to the account page, or the page that was
requested before the login page

16 return <></>; // return nothing
17 }
18 if (error && error.response && error.response.status === 401)

{ // if there is an error and it is a 401 forbidden,
display the error message

19 auth.deleteToken(); // delete the authentication token from
local storage as it must be invalid

20 }
21 return (// display the login form
22 <div className="container mx-auto p-4 mt-12 bg-white flex

flex-col items-center justify-center">
23 <div className="w-10/12 sm:w-8/12 md:w-6/12 lg:w-5/12 xl:w

-4/12 mb-4">
24 <h1 className="text-4xl font-semibold ">Welcome back.</

h1>
25 </div>
26 <div className="w-10/12 sm:w-8/12 md:w-6/12 lg:w-5/12 xl:w

-4/12 mb-6">
27 <Formik
28 initialValues={{ // this sets the initial values for

the form
29 email: '',
30 password: ''
31 }}
32 onSubmit={(values, { setSubmitting }) => { // this

sets the on submit function for the form
33 setButton('Logging in...'); // set the button text

to logging in
34 auth // call the auth service

Arthur Robertson 144

Cryptica Social Media Analysis Application NEA

35 .poster('/auth/login', { // post the login data to
the api

36 email: values.email, // set the email from the
form

37 password: values.password // set the password
from the form

38 })
39 .then((response) => {
40 if (response.status == 200) { // if the response

is a 200 ok
41 setSubmitting(false); // set the form to not

be submitting
42 auth.saveToken(response.data.access_token); //

save the authentication token to local
storage

43 Router.push('/' + (Router.query.redirect || '
account')); // redirect to the account page
, or the page that was requested before the
login page

44 } else { // if the response is not a 200 ok
45 setReply('Error: ' + response.response.data.

detail); // set the reply to the error
message

46 setButton('Log In'); // set the button text to
log in

47 setSubmitting(false); // set the form to not
be submitting

48 }
49 });
50 }}
51 render={() => (// this renders the form
52 <Form>
53 <Field
54 id="email"
55 name="email"
56 placeholder="Email"
57 type="email"
58 className="mb-4 p-2 appearance-none block w-full

bg-neutral-200 placeholder-neutral-900
rounded border focus:border-teal-500"

59 />
60
61 <Field
62 id="password"
63 name="password"

Arthur Robertson 145

Cryptica Social Media Analysis Application NEA

64 placeholder="Password"
65 type="password"
66 className="mb-4 p-2 appearance-none block w-full

bg-neutral-200 placeholder-neutral-900
rounded border focus:border-teal-500"

67 />
68
69 <div className="flex items-center">
70 <div className="w-1/2 flex items-center">
71 <a className="text-sm font-semibold text-

center">
72 <p>New to Cryptica? </p>
73 <p className="hover:underline text-

complementary-400">
74 <Link href="/register" className="hover:

underline">
75 <p className="hover:underline text-

complementary-700">Create an account
</p>

76 </Link>
77 </p>
78
79 </div>
80 <button
81 className="ml-auto w-1/2 bg-neutral-800 text-

white p-2 rounded font-semibold hover:bg-
neutral-900"

82 type="submit"
83 >
84 {button}
85 </button>
86 </div>
87 </Form>
88)}
89 />
90 </div>
91 {reply && (
92 <div className="flex justify-center w-10/12 sm:w-8/12 md

:w-6/12 lg:w-5/12 xl:w-4/12 bg-red-600 py-3 rounded">
93 <p className="font-semibold text-white text-sm">{reply

}</p>
94 </div>
95)}
96 </div>
97);

Arthur Robertson 146

Cryptica Social Media Analysis Application NEA

98 }
99

100 export default Login;

Figure 33: The Login Page

client/page/register/index.js

This page allows the user to register for an account

1 import { Field, Form, Formik } from 'formik';
2 import * as React from 'react';
3 import Router from 'next/router';
4 import { useState } from 'react';
5 import Link from 'next/link';
6 import Auth from '../../services/auth';
7 import useUser from '../../services/user';
8

Arthur Robertson 147

Cryptica Social Media Analysis Application NEA

9 function Register() {
10 const [reply, setReply] = useState(); // this creates a state

variable for the reply from the API
11 const [button, setButton] = useState('Register'); // this

creates a state variable for the button text
12 const { user, loading, error } = useUser(); // this sets user,

loading, and error from the user service
13 const auth = new Auth(); // this creates an instance of the

auth service
14 if (user) { // if the user is logged in
15 Router.push('/account'); // redirect to the account page
16 return <></>;
17 }
18 if (error && error.response && error.response.status === 401)

{ // if there is an error and it is a 401 forbidden,
display the error message

19 auth.deleteToken(); // delete the authentication token from
local storage as it must be invalid

20 }
21
22 return (
23 <main className="container mx-auto p-4 mt-12 bg-white flex

flex-col items-center justify-center">
24 <div className="w-10/12 sm:w-8/12 md:w-6/12 lg:w-5/12 xl:w

-4/12 mb-4">
25 <h1 className="text-4xl font-semibold ">Welcome to

Cryptica.</h1>
26 </div>
27 <div className="w-10/12 sm:w-8/12 md:w-6/12 lg:w-5/12 xl:w

-4/12 mb-6">
28 <Formik // this creates a form with initial values and

on submit function
29 initialValues={{
30 first_name: '',
31 last_name: '',
32 email: '',
33 password: ''
34 }}
35 onSubmit={(values, { setSubmitting }) => { // this

sets the on submit function for the form
36 setButton('Registering...');
37 auth
38 .poster('/auth/register', { // post the login data

to the api
39 first_name: values.first_name,

Arthur Robertson 148

Cryptica Social Media Analysis Application NEA

40 last_name: values.last_name,
41 email: values.email,
42 password: values.password
43 })
44 .then((response) => { //
45 if (response.status == 200) { // if the response

is a 200 OK
46 setSubmitting(false); // stop the form from

submitting
47 auth.saveToken(response.data.access_token); //

save the authentication token returned to
local storage

48 Router.push('/account'); // redirect to the
account page

49 } else { // if the response is not a 200 OK
50 setReply('Error: ' + response.response.data.

detail); // set the reply to the error
message

51 setButton('Register'); // set the button text
back to register

52 setSubmitting(false); // stop the form from
submitting

53 }
54 });
55 }}
56 render={() => (// this renders the form
57 <Form>
58 <div>
59 <div className="flex">
60 <div className="w-1/2">
61 <Field
62 id="first_name"
63 name="first_name"
64 placeholder="First Name"
65 className="mb-4 py-2 pl-2 appearance-none

block bg-neutral-200 placeholder-
neutral-900 rounded border focus:border
-teal-500"

66 />
67 </div>
68 <div className="w-1/2">
69 <Field
70 id="last_name"
71 name="last_name"
72 placeholder="Last Name"

Arthur Robertson 149

Cryptica Social Media Analysis Application NEA

73 className="mb-4 py-2 pl-2 appearance-none
block bg-neutral-200 placeholder-
neutral-900 rounded border focus:border
-teal-500"

74 />
75 </div>
76 </div>
77 </div>
78 <Field
79 id="email"
80 name="email"
81 placeholder="Email"
82 type="email"
83 className="mb-4 p-2 appearance-none block w-full

bg-neutral-200 placeholder-neutral-900
rounded border focus:border-teal-500"

84 />
85
86 <Field
87 id="password"
88 name="password"
89 placeholder="Password"
90 type="password"
91 className="mb-4 p-2 appearance-none block w-full

bg-neutral-200 placeholder-neutral-900
rounded border focus:border-teal-500"

92 />
93
94 <div className="flex items-center">
95 <div className="w-1/2 flex items-center">
96 <a className="text-sm font-semibold text-

center">
97 <p>Already got an account? </p>
98 <p className="hover:underline text-

complementary-400">
99 <Link href="/login" className="hover:

underline">
100 <p className="hover:underline text-

complementary-700">Sign in here</p>
101 </Link>
102 </p>
103
104 </div>
105 <button
106 className="ml-auto w-1/2 bg-neutral-800 text-

Arthur Robertson 150

Cryptica Social Media Analysis Application NEA

white p-2 rounded font-semibold hover:bg-
neutral-900"

107 type="submit"
108 >
109 {button}
110 </button>
111 </div>
112 </Form>
113)}
114 />
115 </div>
116 {reply && (
117 <div className="flex justify-center w-10/12 sm:w-8/12 md

:w-6/12 lg:w-5/12 xl:w-4/12 bg-red-600 py-3 rounded">
118 <p className="font-semibold text-white text-sm">{reply

}</p>
119 </div>
120)}
121 <div className="flex justify-center w-10/12 sm:w-8/12 md:w

-6/12 lg:w-5/12 xl:w-4/12 py-3 rounded">
122 <p className="text-sm">
123 <p className="text-md text-bold">Password Requirements

</p>
124 <ul className="list-disc text-sm list-inside">
125 At least 8 characters
126 At least one number
127 At least one uppercase letter
128 At least one special character
129
130 </p>
131 </div>
132 </main>
133);
134 }
135
136 export default Register;

Arthur Robertson 151

Cryptica Social Media Analysis Application NEA

Figure 34: The register page

client/pages/news/index.js

This page shows a list of news articles from the API.

1 import Sidebar from '../../components/layout/sidebar';
2 import Feature from '../../components/news/feature';
3 import Post from '../../components/news/post';
4 import { useEffect, useState } from 'react';
5 import Auth from '../../services/auth';
6 import Loading from '../../components/loading';
7 export default function News() {
8 const auth = new Auth(); // creates an instance of the Auth

class
9 const [data, setData] = useState(); // creates a state

variable for the data
10 useEffect(() => { // useEffect hook for fetching data when the

Arthur Robertson 152

Cryptica Social Media Analysis Application NEA

component mounts
11 auth // calls the auth instance
12 .fetcher('/news/') // fetches the data from the API
13 .then((res) => setData(res)) // sets the data to the state
14 .catch(); // catches any errors
15 }, []);
16
17 function formatDate(date) { // function to format the date

into a readable format
18 const dateObj = new Date(date); // creates a new date object

from the date string
19 const now = new Date(); // creates a new date object for now
20 const diff = now - dateObj; // calculates the difference

between the two dates
21 const diffDays = Math.floor(diff / (1000 * 60 * 60 * 24));

// calculates the difference in days
22 if (diffDays < 1) { // if the difference is less than 1 day
23 const diffHours = Math.floor(diff / (1000 * 60 * 60)); //

calculates the difference in hours
24 if (diffHours < 1) { // if the difference is less than 1

hour
25 const diffMinutes = Math.floor(diff / (1000 * 60)); //

calculates the difference in minutes
26 if (diffMinutes < 1) { // if the difference is less than

1 minute
27 return 'Just now'; // returns 'Just now'
28 } else { // if the difference is more than 1 minute
29 return `${diffMinutes} minutes ago`; // returns the

difference in minutes
30 }
31 return `${diffHours} hours ago`; // returns the difference

in hours
32 }
33 if (diffDays === 1) { // if the difference is 1 day
34 return 'Yesterday'; // returns 'Yesterday'
35 }
36 if (diffDays < 7) { // if the difference is less than 7 days
37 return `${diffDays} days ago`; // returns the difference

in days
38 } else { // if the difference is more than 7 days
39 const monthNames = [// creates an array of month names
40 'January',
41 'February',
42 'March',
43 'April',

Arthur Robertson 153

Cryptica Social Media Analysis Application NEA

44 'May',
45 'June',
46 'July',
47 'August',
48 'September',
49 'October',
50 'November',
51 'December'
52];
53 const day = dateObj.getDate(); // gets the day from the

date object
54 const monthIndex = dateObj.getMonth(); // gets the month

from the date object
55 const year = dateObj.getFullYear(); // gets the year from

the date object
56 return `${monthNames[monthIndex]} ${day}, ${year}`; //

returns the month and day
57 }
58 }
59
60 return (
61 <div className="flex bg-gray-50">
62 <div className="h-1/2 top-32 sticky w-64 hidden lg:flex">
63 <div className="flex-1 px-5">
64 <Sidebar>
65 <div className="py-5 text-6xl text-center lg:text-

left font-medium transform">NEWS</div>
66 All our news is gathered from the internet via an

external party, so we can{"'"}t
67 guarantee the accuracy of the news.

68 For more information, visit our FAQs.
69 </Sidebar>
70 </div>
71 </div>
72
73 <div className="flex-grow ">
74 {data ? (// if the data is set, then show the feature

with the first data item
75 <Feature
76 id={data[0].id}
77 title={data[0].title}
78 author={data[0].publication}
79 date={formatDate(data[0].date)} // formats the date
80 image={data[0].imageurl || 'null'} // if the

imageurl is set, then use it, otherwise use null

Arthur Robertson 154

Cryptica Social Media Analysis Application NEA

81 />
82) : (
83 <Feature />
84)}
85
86 <div className="sm:px-2 md:px-20 border-dotted lg:border

-l xl:border-r border-neutral-600">
87 <h2 className="py-8 text-2xl font-extrabold leading-

tight border-b border-dotted border-neutral-600 md:
text-4xl">

88 All Articles
89 </h2>
90 {data ? (// if the data is set, then show the posts

with the rest of the data items
91 data.map((post) => (// maps the data items to the

post component with the data
92 <Post
93 key={post.id}
94 title={post.title}
95 summary={post.description}
96 date={formatDate(post.date)} // formats the date
97 author={post.publication}
98 id={post.id}
99 image={post.imageurl}

100 />
101))
102) : (// if the data is not set, then show a loading

screen
103 <Post
104 key="1"
105 title="Loading..."
106 summary="Loading..."
107 date="Loading..."
108 author="Loading..."
109 id="1"
110 image=""
111 />
112)}
113 </div>
114 </div>
115 </div>
116);
117 }

Arthur Robertson 155

Cryptica Social Media Analysis Application NEA

Figure 35: News index page, with the featured article at the top

client/pages/news/[id].js

This page shows details about a specific article, specified by the ID in the url. It also contains
a comment box for users to write comments.

1 import { useRouter } from 'next/router';
2 import Content from '../../components/news/content';
3 import Loading from '../../components/loading';
4 import Auth from '../../services/auth';
5 import Comments from '../../components/news/comments';
6 import { useState, useEffect } from 'react';
7 const Post = (props) => {
8 const auth = new Auth(); // creates an instance of the Auth

class
9 const router = useRouter(); // creates an instance of the

router

Arthur Robertson 156

Cryptica Social Media Analysis Application NEA

10 const { id } = router.query; // gets the id of the news
article from the url

11 const [data, setData] = useState(null); // creates a state
variable for the data

12 useEffect(() => { // useEffect hook for fetching data when the
component mounts

13 (async () => {
14 if (!id) { // if there is no id
15 return; // returns
16 }
17 const response = await auth.fetcher(`/news/${id}`, false);

// fetches the data from the API with the id
18 setData(response); // sets the data to the state
19 })(); // calls the async function
20 }, [id]); // runs the useEffect hook when the id changes
21
22 if (!data || !id) { // if there is no data or the id is not

set
23 return <Loading />; // returns the loading component
24 }
25
26 if (data) {
27 return (
28 <>
29 <div className="py-10 bg-primary-800 text-white pb-60">
30 <h1 className="text-4xl font-bold text-center">{data.

title}</h1>
31 <h3 className="text-xl text-center font-medium pt-2">{

data.date}</h3>
32 </div>
33
34 <section className="container h-96 mx-auto flex -mt-48">
35 <img className="mx-auto" src={data.imageurl} alt="

Image" />
36 </section>
37
38 <Content content={data.content} />
39 <div className="p-5 bg-primary-800 text-white space-y-2"

>
40 <h3 className="text-2xl text-center font-light hover:

text-neutral-300">
41 Read the full article here..
42 </h3>
43 <h3 className="text-md text-center font-medium">
44 {data.author} | {data.publication}

Arthur Robertson 157

Cryptica Social Media Analysis Application NEA

45 </h3>
46 </div>
47 <Comments comments={data.comments} id={id} />
48 </>
49);
50 }
51 };
52
53 export default Post;

Arthur Robertson 158

Cryptica Social Media Analysis Application NEA

Figure 36: An example news page, with a testing comment.

Arthur Robertson 159

Cryptica Social Media Analysis Application NEA

client/pages/_app.js

This file adds the layout component to every single page. The layout component contains the
header and some other parts.

1 import Layout from '../components/layout/layout';
2
3 import './global.css';
4
5 function App({ Component, pageProps }) {
6 return (
7 <Layout> // adds the layer component around the page
8 <Component {...pageProps} />
9 </Layout>

10);
11 }
12
13 export default App;

client/services/auth.js

This file handles authentication and making requests and is used throughout the program.

1 import Cookies from 'universal-cookie';
2 const axios = require('axios');
3
4 class HTTPRequests { // creates a class for handling HTTP

requests
5 async fetcher(url, auth = false) { // function to make fetch

GET requests
6 const headers = { // headers for the request
7 'Content-Type': 'application/json'
8 };
9 if (auth) { // if auth is true, add the JWT token to the

request
10 const cookies = new Cookies(); // create a new cookie

object
11 const token = cookies.get('token'); // get the token from

the cookie
12 if (!token) { // if there is no token, throw an error
13 const error = new Error('Unauthorized'); // create an

error
14 return Promise.reject(error); // return the error

Arthur Robertson 160

Cryptica Social Media Analysis Application NEA

15 } else { // if there is a token, add it to the request
16 headers.Authorization = 'Bearer ' + token; // add the

token to the request headers
17 }
18 }
19 const res = await axios.get(`${process.env.

NEXT_PUBLIC_API_URL}${url}`, { headers: headers }); //
make the request

20 return res.data; // return the data
21 }
22
23 async poster(url, data, auth = false) { // function to make

POST requests
24 const headers = { // headers for the request
25 'Content-Type': 'application/json'
26 };
27 if (auth) {
28 const cookies = new Cookies();
29 const token = cookies.get('token');
30 if (!token) {
31 error = new Error('No token');
32 return Promise.reject(error);
33 } else {
34 headers.Authorization = 'Bearer ' + token;
35 }
36 }
37 const res = await axios // make the request
38 .post(`${process.env.NEXT_PUBLIC_API_URL}${url}`, data, {

// send the data
39 headers: headers // with the headers
40 })
41 .catch((error) => { // if there is an error
42 return error; // return the error
43 });
44
45 return res;
46 }
47
48 async deleter(url, auth = false) { // function to make DELETE

requests
49 const headers = {
50 'Content-Type': 'application/json'
51 };
52 if (auth) { //
53 const cookies = new Cookies();

Arthur Robertson 161

Cryptica Social Media Analysis Application NEA

54 const token = cookies.get('token');
55 if (!token) {
56 error = new Error('No token');
57 return Promise.reject(error);
58 } else {
59 headers.Authorization = 'Bearer ' + token;
60 }
61 }
62 const res = await axios // make the request
63 .delete(`${process.env.NEXT_PUBLIC_API_URL}${url}`, {
64 headers: headers
65 })
66 .catch((error) => {
67 return error;
68 });
69
70 return res;
71 }
72 }
73
74 class Auth extends HTTPRequests { // function for managing

authentication, extends the HTTPRequests class and inherits
its methods

75 saveToken(token) { // function to save the token
76 const cookies = new Cookies(); // create a new cookie object
77 cookies.set('token', token, { // set the token in the cookie
78 path: '/',
79 expires: new Date(Date.now() + (1000 * 60 * 60 * 24 * 7)),

// set the expiry date to 1 week from now
80 sameSite: true // set the cookie to only be accessible

from the same site
81 });
82 return Promise.resolve(); // return a resolved promise
83 }
84
85 deleteToken() { // function to delete the token
86 const cookies = new Cookies(); // create a new cookie object
87 cookies.remove('token', { path: '/' }); // remove the token

from the cookie
88 return; // return nothing
89 }
90 useUser() { // function to check if the user is logged in
91 const { data, error } = useSWR(['/auth/me', true], this.

fetcher); // get the user data from the API
92 return { // return the data and error

Arthur Robertson 162

Cryptica Social Media Analysis Application NEA

93 user: data, // the user data
94 loading: !error && !data, // if there is an error or no

data, the user is loading
95 error: error // the error
96 }}
97
98 }
99 export default Auth; // export the class

component/comments.js

Component for a comment. Allows the user to delete the comment using the auth.deleter
function, if the comment is their own.

1 import { useRouter } from 'next/router';
2 import Link from 'next/link';
3 import Auth from '../services/auth';
4
5 const Users = (props) => {
6 const router = useRouter();
7 const auth = new Auth();
8 async function deleteComment(comment_id) {
9 if (!comment_id) {

10 return;
11 }
12 await auth.deleter(`/news/0/comments/${comment_id}`, true).

catch((err) => {
13 console.log(err.message);
14 });
15 router.reload();
16 }
17 return (
18 <>
19 {props.comments.map((comment, key) => (
20 <div
21 key={key}
22 className="flex items-center py-4 mx-auto border

border-black sm:px-8 md:px-12 sm:py-4 w-full md:w-
full px-3 mb-2 mt-8"

23 >
24 <div>
25 <h3 className='className="text-lg font-bold text-

primary-800 sm:text-xl md:text-2xl'>

Arthur Robertson 163

Cryptica Social Media Analysis Application NEA

26 <Link href={`/news/${comment.news_id}`}>{comment.
title}</Link>

27 </h3>
28 <p className="text-sm font-bold text-neutral-600">{

comment.date}</p>
29 <p className="mt-2 text-base sm:text-lg md:text-

normal">{comment.content}</p>
30 {(props.user == comment.user_id || props.user.admin)

&& (
31 <button
32 onClick={() => deleteComment(comment.id)}
33 className="text-sm font-bold text-neutral-600"
34 >
35 Delete Comment
36 </button>
37)}
38 </div>
39 </div>
40))}
41 </>
42);
43 };
44
45 export default Users;

component/loading.js

Component that indicates that the page is loading.

1 const Loading = (props) => {
2 return (
3 <>
4 <div className="flex justify-center items-center h-full -

mt-24">
5 <div
6 className={
7 'animate-spin rounded-full h-32 w-32 border-b-2 ' +
8 (props.dark ? 'border-neutral-100' : 'border-neutral

-900')
9 }

10 >
11 </div>
12 </div>

Arthur Robertson 164

Cryptica Social Media Analysis Application NEA

13 </>
14);
15 };
16
17 export default Loading;

component/layout/layout.js

Component that provides the basic page layout that is applied to every page.

1 import NavBar from './navbar/navbar';
2 import Head from 'next/head';
3 const Layout = (props) => {
4 return (
5 <>
6 <Head>
7 <title>CRYPTICA</title>
8 <meta name="viewport" content="viewport-fit=cover, width

=device-width, initial-scale=1.0" />
9 </Head>

10 <div className="flex flex-col min-h-screen">
11 <NavBar />
12 <main className="flex-grow relative flex-1 dark:bg-black

dark:text-white bg-white">
13 {props.children}
14 </main>
15 {/* Footer */}
16 <section className="h-full bg-primary-900">
17 <div className="py-6 px-16 flex justify-between">
18 <div>
19 <h1 className="font-bold text-white text-xl">

CRYPTICA</h1>
20 </div>
21 </div>
22
23 <div className="border-t-2 mx-10 border-gray-500"></

div>
24
25 <div className="py-4 py-6 px-16 flex justify-between">
26 <div>
27 <h1 className="font-semibold text-white text-sm">

Copyright @ 2021</h1>
28 </div>

Arthur Robertson 165

Cryptica Social Media Analysis Application NEA

29
30 <div>
31 <a href="#" className="flex space-x-2 text-white

hover:text-yellow-400">
32 <p className="font-semibold text-sm">GO TOP</p>
33 <svg
34 xmlns="http://www.w3.org/2000/svg"
35 className="h-6 w-6 -mt-1"
36 fill="none"
37 viewBox="0 0 24 24"
38 stroke="currentColor"
39 >
40 <path
41 strokeLinecap="round"
42 strokeLinejoin="round"
43 strokeWidth="2"
44 d="M8 7l4-4m0 0l4 4m-4-4v18"
45 />
46 </svg>
47
48 </div>
49 </div>
50 </section>
51 </div>
52 </>
53);
54 };
55
56 export default Layout;

component/layout/navbar/ticker.js

Component that fetches data from a public cryptocurrency price API, and displays the price
change and price in a ticker format.

1
2 import Price from './price';
3 import { useEffect, useState } from 'react';
4 import axios from 'axios';
5 import FinancialTicker from '../ticker';
6 import TickerList from '../ticker/general';
7
8 const Ticker = () => {

Arthur Robertson 166

Cryptica Social Media Analysis Application NEA

9 const round = (num) => {
10 return Math.round(num * 10000) / 10000;
11 };
12
13 const coins = [
14 'bitcoin',
15 'ethereum',
16 'cardano',
17 'binance-coin',
18 'xrp',
19 'dogecoin',
20 'polkadot',
21 'solano',
22 'uniswap',
23 'litecoin',
24 'terra-luna',
25 'chainlink',
26 'algorand'
27];
28
29 const url =
30 'https://api.coingecko.com/api/v3/simple/price?ids=' +
31 coins.join('%2c') +
32 '&vs_currencies=usd&include_24hr_change=true';
33
34 const [data, setData] = useState([]);
35
36 const [visible, setVisible] = useState(true);
37
38 useEffect(() => {
39 axios
40 .get(url)
41 .then((response) => {
42 setData(response.data);
43 //console.log(response.data);
44 return;
45 })
46 .catch((error) => {
47 return;
48 });
49 }, []);
50 return (
51 <>
52 {visible && (
53 <nav className="bg-primary-800 nav flex flex-wrap items-

Arthur Robertson 167

Cryptica Social Media Analysis Application NEA

center justify-between overflow-x-auto border-b
border-primary-900">

54 <TickerList>
55 {Object.keys(data).map((coin, key) => {
56 return (
57 <FinancialTicker
58 key={key}
59 id={key}
60 symbol={coin}
61 lastPrice={data[coin].usd}
62 percentage={Math.abs(Math.round(data[coin].

usd_24h_change * 10) / 10)}
63 currentPrice={round(data[coin].usd)}
64 positive={data[coin].usd_24h_change > 0}
65 />
66);
67 })}
68 </TickerList>
69 </nav>
70)}
71 </>
72);
73 };
74
75 export default Ticker;

component/layout/account.js

Component that displays either account, or login, depending on whether the user is logged in
or not.

1 import Auth from '../../../services/auth';
2 import useUser from '../../../services/user';
3 const Account = () => {
4 const { user, loading, error } = useUser();
5 const auth = new Auth();
6 if (user) {
7 return <>ACCOUNT</>;
8 }
9 if (error && error.response && error.response.status === 401)

{
10 auth.deleteToken();
11 return <>LOGIN</>;

Arthur Robertson 168

Cryptica Social Media Analysis Application NEA

12 }
13 return <>LOGIN</>;
14 };
15
16 export default Account;

component/coin/graph.js

Component that fetches price data from an API and displays it in a candlestick chart for a
specified cryptocurrency.

1 import { useState, useEffect } from 'react';
2 import axios from 'axios';
3 import ReactECharts from 'echarts-for-react';
4
5 const Graph = (props) => {
6 const [data, setData] = useState();
7 const formateDate = (timestamp) => {
8 const d = new Date(timestamp);
9 const month = [

10 'Jan',
11 'Feb',
12 'Mar',
13 'Apr',
14 'May',
15 'Jun',
16 'Jul',
17 'Aug',
18 'Sep',
19 'Oct',
20 'Nov',
21 'Dec'
22][d.getMonth()];
23 const day = d.getDate();
24 const year = d.getFullYear();
25 return `${day} ${month} ${year}`;
26 };
27
28 useEffect(async () => {
29 if (!props.coin) {
30 setData([]);
31 return;
32 }

Arthur Robertson 169

Cryptica Social Media Analysis Application NEA

33 const result = await axios(
34 `https://api.coingecko.com/api/v3/coins/${props.coin.

toLowerCase()}/market_chart?vs_currency=usd&days=365`
35).catch(() => {
36 setData([]);
37 return;
38 });
39 //console.log(result.data);
40 result && result.data && setData(result.data.prices);
41 }, [props.coin]);
42
43 if (!data) {
44 return null;
45 }
46
47 const option = {
48 xAxis: {
49 type: 'category',
50 data: data.map((d) => formateDate(d[0]))
51 },
52 yAxis: {
53 type: 'value'
54 },
55 series: [
56 {
57 data: data.map((d) => d[1]),
58 type: 'line',
59 showSymbol: false
60 }
61],
62
63 title: {
64 text: props.coin + '/usd',
65 x: 'center',
66 top: '10px'
67 },
68 tooltip: {
69 trigger: 'axis',
70 axisPointer: {
71 type: 'cross',
72 label: {
73 backgroundColor: '#6a7985'
74 }
75 }
76 }

Arthur Robertson 170

Cryptica Social Media Analysis Application NEA

77 };
78
79 return (
80 <>
81 <ReactECharts
82 option={option}
83 notMerge={true}
84 lazyUpdate={true}
85 style={{ height: '100%', width: '100%' }}
86 />
87 </>
88);
89 };
90
91 export default Graph;

component/analysis/tweet.js

Component that imitates a tweet embed, that can be supplied with data to appear like a
tweet.

1 import Image from 'next/image';
2
3 export default function Tweet(props) {
4 const authorUrl = `https://twitter.com/${props.tweet.username

}`;
5 const likeUrl = `https://twitter.com/intent/like?tweet_id=${

props.tweet.id}`;
6 const retweetUrl = `https://twitter.com/intent/retweet?

tweet_id=${props.tweet.id}`;
7 const replyUrl = `https://twitter.com/intent/tweet?in_reply_to

=${props.tweet.id}`;
8 const tweetUrl = `https://twitter.com/${props.tweet.username}/

status/${props.tweet.id}`;
9

10 const formattedText = props.tweet.tweet.replace(/https:\/\/[\n
\S]+/g, '');

11
12 return (
13 <>
14 <div className="flex items-center">
15 <a className="flex h-12 w-12" href={authorUrl} target="

_blank" rel="noopener noreferrer">

Arthur Robertson 171

Cryptica Social Media Analysis Application NEA

16 <Image
17 alt={props.tweet.username}
18 height={48}
19 width={48}
20 src={props.user.avatar}
21 className="rounded-full"
22 />
23
24 <a
25 href={authorUrl}
26 target="_blank"
27 rel="noopener noreferrer"
28 className="author flex flex-col ml-4 !no-underline"
29 >
30 <span
31 className="flex items-center font-bold !text-neutral

-900 dark:!text-neutral-100 leading-5"
32 title={props.tweet.username}
33 >
34 {props.tweet.name}
35 {props.user.is_verified ? (
36 <svg
37 aria-label="Verified Account"
38 className="ml-1 text-complementary-500 dark:text

-white inline h-4 w-4"
39 viewBox="0 0 24 24"
40 >
41 <g fill="currentColor">
42 <path d="M22.5 12.5c0

-1.58-.875-2.95-2.148-3.6.154-.435.238-.905.238-1.4
0-2.21-1.71-3.998-3.818-3.998-.47

0-.92.084-1.336.25C14.818 2.415 13.51 1.5
12 1.5s-2.816.917-3.437 2.25c
-.415-.165-.866-.25-1.336-.25-2.11 0-3.818
1.79-3.818 4 0 .494.083.964.237
1.4-1.272.65-2.147 2.018-2.147 3.6 0
1.495.782 2.798 1.942
3.486-.02.17-.032.34-.032.514 0 2.21 1.708
4 3.818 4 .47 0 .92-.086 1.335-.25.62 1.334
1.926 2.25 3.437 2.25 1.512 0 2.818-.916

3.437-2.25.415.163.865.248 1.336.248 2.11 0
3.818-1.79 3.818-4

0-.174-.012-.344-.033-.513 1.158-.687
1.943-1.99 1.943-3.484zm-6.616-3.334l-4.334
6.5c-.145.217-.382.334-.625.334-.143

Arthur Robertson 172

Cryptica Social Media Analysis Application NEA

0-.288-.04-.416-.126l-.115-.094-2.415-2.415
c-.293-.293-.293-.768 0-1.06s.768-.294 1.06
0l1.77 1.767 3.825-5.74c.23-.345.696-.436

1.04-.207.346.23.44.696.21 1.04z" />
43 </g>
44 </svg>
45) : null}
46
47 <span className="!text-neutral-500" title={`@${props.

tweet.username}`}>
48 @{props.tweet.username}
49
50
51 <a className="ml-auto" href={authorUrl} target="_blank"

rel="noopener noreferrer">
52 <svg viewBox="328 355 335 276" height="24" width="24"

xmlns="http://www.w3.org/2000/svg">
53 <path
54 d="M 630, 425 A 195, 195 0 0 1 331, 600 A

142, 142 0 0 0 428, 570 A 70, 70 0 0 1
370, 523 A 70, 70 0 0 0 401, 521 A 70,

70 0 0 1 344, 455 A 70, 70 0 0 0 372,
460 A 70, 70 0 0 1 354, 370 A 195, 195
0 0 0 495, 442 A 67, 67 0 0 1 611, 380
A 117, 117 0 0 0 654, 363 A 65, 65 0 0 1
623, 401 A 117, 117 0 0 0 662, 390 A 65,

65 0 0 1 630, 425 Z"
55 style={{ fill: '#3BA9EE' }}
56 />
57 </svg>
58
59 </div>
60 <div className="mt-4 mb-1 leading-normal whitespace-pre-

wrap text-lg !text-neutral-700 dark:!text-neutral-300">
61 {formattedText}
62 </div>
63 {props.tweet.photos && props.tweet.photos.length ? (
64 <div
65 className={
66 props.tweet.photos.length === 1
67 ? 'inline-grid grid-cols-1 gap-x-2 gap-y-2 my-2'
68 : 'inline-grid grid-cols-2 gap-x-2 gap-y-2 my-2'
69 }
70 >
71 {props.tweet.photos.map((m, key) => (

Arthur Robertson 173

Cryptica Social Media Analysis Application NEA

72 <div key={key}>
73 <img alt={props.tweet.tweet} src={m} size="small"

className="rounded" />
74 </div>
75))}
76 </div>
77) : null}
78 <a
79 className="!text-neutral-500 text-sm hover:!underline"
80 href={tweetUrl}
81 target="_blank"
82 rel="noopener noreferrer"
83 >
84 <time title={`Time Posted: ${props.tweet.datetime}`}

dateTime={props.tweet.datetime}>
85 {props.tweet.datetime}
86 </time>
87
88 <div className="flex !text-neutral-700 dark:!text-neutral

-300 mt-2">
89 <a
90 className="flex items-center mr-4 !text-neutral-500

hover:!text-complementary-600 transition hover:!
underline"

91 href={replyUrl}
92 target="_blank"
93 rel="noopener noreferrer"
94 >
95 <svg className="mr-2" width="24" height="24" viewBox="

0 0 24 24">
96 <path
97 className="fill-current"
98 d="M14.046 2.242l-4.148-.01h-.002c-4.374 0-7.8

3.427-7.8 7.802 0 4.098 3.186 7.206 7.465 7.37
v3.828c0
.108.045.286.12.403.143.225.385.347.633.347.138
0 .277-.038.402-.118.264-.168 6.473-4.14

8.088-5.506 1.902-1.61 3.04-3.97 3.043-6.312v
-.017c-.006-4.368-3.43-7.788-7.8-7.79zm3.787
12.972c-1.134.96-4.862 3.405-6.772 4.643V16.67
c0-.414-.334-.75-.75-.75h-.395c-3.66
0-6.318-2.476-6.318-5.886 0-3.534 2.768-6.302
6.3-6.302l4.147.01h.002c3.532 0 6.3 2.766 6.302
6.296-.003 1.91-.942 3.844-2.514 5.176z"

99 />

Arthur Robertson 174

Cryptica Social Media Analysis Application NEA

100 </svg>
101 {new Number(props.tweet.replies_count).

toLocaleString()}
102
103 <a
104 className="flex items-center mr-4 !text-neutral-500

hover:!text-green-600 transition hover:!underline"
105 href={retweetUrl}
106 target="_blank"
107 rel="noopener noreferrer"
108 >
109 <svg className="mr-2" width="24" height="24" viewBox="

0 0 24 24">
110 <path
111 className="fill-current"
112 d="M23.77 15.67c-.292-.293-.767-.293-1.06 0l-2.22

2.22V7.65c0-2.068-1.683-3.75-3.75-3.75h-5.85c
-.414 0-.75.336-.75.75s.336.75.75.75h5.85c1.24
0 2.25 1.01 2.25 2.25v10.24l-2.22-2.22c
-.293-.293-.768-.293-1.06 0s-.294.768 0 1.06l3
.5 3.5c.145.147.337.22.53.22s.383-.072.53-.22l3
.5-3.5c.294-.292.294-.767 0-1.06zm-10.66 3.28H7
.26c-1.24 0-2.25-1.01-2.25-2.25V6.46l2.22 2.22c
.148.147.34.22.532.22s.384-.073.53-.22c
.293-.293.293-.768 0-1.06l-3.5-3.5c
-.293-.294-.768-.294-1.06 0l-3.5 3.5c
-.294.292-.294.767 0 1.06s.767.293 1.06 0l2
.22-2.22V16.7c0 2.068 1.683 3.75 3.75 3.75h5.85
c.414 0 .75-.336.75-.75s-.337-.75-.75-.75z"

113 />
114 </svg>
115 {new Number(props.tweet.retweets_count).

toLocaleString()}
116
117 <a
118 className="flex items-center !text-neutral-500 hover:!

text-red-600 transition hover:!underline"
119 href={likeUrl}
120 target="_blank"
121 rel="noopener noreferrer"
122 >
123 <svg className="mr-2" width="24" height="24" viewBox="

0 0 24 24">
124 <path
125 className="fill-current"

Arthur Robertson 175

Cryptica Social Media Analysis Application NEA

126 d="M12 21.638h-.014C9.403 21.59 1.95 14.856 1.95
8.478c0-3.064 2.525-5.754 5.403-5.754 2.29 0
3.83 1.58 4.646 2.73.813-1.148 2.353-2.73
4.644-2.73 2.88 0 5.404 2.69 5.404 5.755 0
6.375-7.454 13.11-10.037 13.156H12zM7.354 4.225
c-2.08 0-3.903 1.988-3.903 4.255 0 5.74 7.035
11.596 8.55 11.658 1.52-.062 8.55-5.917
8.55-11.658
0-2.267-1.822-4.255-3.902-4.255-2.528 0-3.94
2.936-3.952 2.965-.23.562-1.156.562-1.387
0-.015-.03-1.426-2.965-3.955-2.965z"

127 />
128 </svg>
129 {new Number(props.tweet.likes_count).

toLocaleString()}
130
131 </div>
132 </>
133);
134 }

components/analysis/search.js

Search bar component.

1 const Search = () => {
2 return (
3 <div className="space-x-5 flex">
4 <div className="relative inline-flex self-center flex-

initial">
5 <svg
6 className="text-white bg-primary-700 absolute top-0

right-0 m-2 pointer-events-none p-2 rounded"
7 xmlns="http://www.w3.org/2000/svg"
8 width="40px"
9 height="40px"

10 viewBox="0 0 38 22"
11 version="1.1"
12 >
13 <g stroke="none" strokeWidth="1" fill="none" fillRule=

"evenodd">
14 <g transform="translate(-539.000000, -199.000000)"

fill="#ffffff" fillRule="nonzero">

Arthur Robertson 176

Cryptica Social Media Analysis Application NEA

15 <g id="Icon-/-ArrowRight-Copy-2" transform="
translate(538.000000, 183.521208)">

16 <polygon
17 id="Path-Copy"
18 transform="translate(20.000000, 18.384776)

rotate(135.000000) translate(-20.000000,
-18.384776) "

19 points="33 5.38477631 33 31.3847763 29
31.3847763 28.999 9.38379168 7 9.38477631 7
5.38477631"

20 />
21 </g>
22 </g>
23 </g>
24 </svg>
25 <select className="text-xl font-bold rounded border-2

border-primary-700 text-neutral-600 h-14 w-44 pl-5 pr
-10 bg-white hover:border-neutral-400 focus:outline-
none appearance-none">

26 <option>Bitcoin</option>
27 <option>Ethereum</option>
28 <option>Doge</option>
29 <option>Litecoin</option>
30 <option>Cardano</option>
31 </select>
32 </div>
33 <input
34 placeholder="elonmusk"
35 className="flex-auto text-xl font-bold rounded border-2

border-primary-700 text-neutral-600 h-14 pl-5 pr-10
bg-white hover:border-neutral-400 focus:outline-none
appearance-none"

36 />
37 <button className="text-xl font-bold rounded text-white h

-14 px-8 bg-primary-800 hover:bg-primary-900 focus:
outline-none appearance-none">

38 Submit
39 </button>
40 </div>
41);
42 };
43
44 export default Search;

Arthur Robertson 177

Cryptica Social Media Analysis Application NEA

components/analysis/ohcl.js

Another graph component, that takes in data and displays it as a candlestick chart.

1 import ReactECharts from 'echarts-for-react';
2
3 const OHCL = (props) => {
4 const data = props.data;
5 //console.log(data);
6 const formatInt = (int) => {
7 if (int.slice(-1) === '0') {
8 int = int.slice(0, -1);
9 return formatInt(int);

10 } else {
11 return parseFloat(int, 10);
12 }
13 };
14
15 if (!data) {
16 return null;
17 }
18
19 const downColour = '#ec0000';
20 const downBorderColour = '#8A0000';
21 const upColour = '#00da3c';
22 const upBorderColour = '#008F28';
23 const option = {
24 dataset: {
25 source: data
26 },
27
28 tooltip: {
29 trigger: 'axis',
30 axisPointer: {
31 type: 'cross'
32 },
33 renderMode: 'html',
34 padding: 4,
35 /*formatter: function (params) {
36 console.log(params[0]);
37 const colour = params[0].data[1] > params[0].data[4] ? '

red' : 'green';
38 return `$${

params[0].data[4]}`;
39 }*/

Arthur Robertson 178

Cryptica Social Media Analysis Application NEA

40 extraCssText: '@apply bg-neutral-200 p-10'
41 },
42 grid: [
43 {
44 left: '8%',
45 right: '5%',
46 bottom: '10%'
47 }
48],
49 xAxis: [
50 {
51 type: 'time',
52 scale: true
53 }
54],
55 yAxis: [
56 {
57 scale: true,
58 type: 'value',
59 axisLabel: {
60 formatter: '${value}'
61 }
62 }
63],
64 dataZoom: [
65 {
66 type: 'inside',
67 xAxisIndex: [0, 1]
68 }
69],
70
71 series: [
72 {
73 type: 'candlestick',
74 itemStyle: {
75 color: upColour,
76 color0: downColour,
77 borderColor: upBorderColour,
78 borderColor0: downBorderColour
79 },
80 encode: {
81 x: 0,
82 y: [1, 4, 3, 2],
83 tooltip: [1, 4, 3, 2]
84 },

Arthur Robertson 179

Cryptica Social Media Analysis Application NEA

85 markLine: {
86 itemStyle: {
87 color: 'rgba(255, 173, 177, 1)'
88 },
89 symbol: 'none',
90 lineStyle: {
91 type: 'solid',
92 capp: 'round',
93 width: 2,
94 opacity: 0.8,
95 color: 'blue'
96 },
97 label: {
98 show: true,
99 fontSize: 17,

100 formatter: 'Tweet',
101 color: 'blue',
102 fontWeight: 'bold',
103 opacity: 0.8
104 },
105 data: [
106 {
107 name: 'Tweet',
108 xAxis: data[29][0] - 30000,
109 type: 'max'
110 }
111]
112 }
113 }
114]
115 };
116 return (
117 <>
118 <ReactECharts
119 option={option}
120 notMerge={true}
121 lazyUpdate={true}
122 style={{ height: '100%', width: '100%' }}
123 />
124 </>
125);
126 };
127
128 export default OHCL;

Arthur Robertson 180

Cryptica Social Media Analysis Application NEA

TESTING

CLIENT APPLICATION TESTING

I have tested the clients performance by using Google’s lighthouse page analysis tool.

Figure 37: Screenshot of the lighthouse tool

It performed excellently, scoring 90-100 in all 4 categories.

To test the clients functionality, I prepared a table full of tests. Then I recorded a video where I
go through and check each test. You can see the video and the table below.

Video Link: https://youtu.be/zSj_id9I7-c

Arthur Robertson 181

https://youtu.be/zSj_id9I7-c

Cryptica Social Media Analysis Application NEA

ID Component Test Result

Video
Times-
tamp

1.1 News index page There should be a news page
that displays all the articles in
the database

Pass 0:04

1.2 News index page There should be a feature
article, that has a full size
image and headline at the top
of the page

Pass 0:03

1.3 News index page There should be a list of
articles with title, image, date,
and other info

Pass 0:04

1.4 News index page Each article on news index
page is clickable, and clicking
brings you to the articles page

Pass 0:13

2.1 News article page Each article should have its
own page that is accessible
from the news index page

Pass 0:13

2.2 News article page There should be a full size
article image and article title
displayed

Pass 0:13

2.3 News index page On each articles page, an
excerpt from the begininning
of the article is displayed

Pass 0:13

2.4 News index page Each article page has a link to
the original article

Pass 0:20

2.5 News index page Each article page has a
comments field at the bottum.
This should be grayed out if the
user is not logged in

Pass 0:19

Arthur Robertson 182

Cryptica Social Media Analysis Application NEA

ID Component Test Result

Video
Times-
tamp

3.1 Coin index page There should be a coin index
page that has a table with
information about the top 50
cryptocurrencies

Pass 0:25

3.2 Coin index page Statistics about each coin
should be displayed in the
table

Pass 0:25

3.3 Coin index page Each coin in the table should
be clickable, and should bring
you to the coins unique page

Pass 0:40

4.1 Individual coin page Each coin should have a page
that displays some information
about the coin

Pass 0:40

4.2 Individual coin page Each coins page should have a
graph showing the price of the
coin against the dollar in the
last year

Pass 0:42

4.3 Individual coin page Other metrics such as market
cap should be shown on the
coins page

Pass 0:40

4.4 Individual coin page Related news articles should
be displayed on the coins page

Pass 0:40

4.5 Individual coin page Clicking on one of the related
articles should take you to the
articles page

Pass 0:56

4.6 Individual coin page Each coin page should have a
description of the coin

Pass 0:40

Arthur Robertson 183

Cryptica Social Media Analysis Application NEA

ID Component Test Result

Video
Times-
tamp

5.1 Registration page There should be a registration
page, that has a form for name,
email, and password

Pass 1:09

5.2 Registration page Attempting to register with an
email that already exists
should display an error

Pass 1:26

5.3 Registration page Attempting to register with a
password that does not meet
the security requirements
should display an error

Pass 1:20

5.4 Registration page Registering successfully should
redirect you to the account
page

Pass 1:37

6.1 Account page There should be an account
page that is only accessible to
logged in users

Pass 1:37

6.2 Account page There should be a banner that
welcomes the name of the user

Pass 1:37

6.3 Account page The logged in users email
should be displayed

Pass 1:37

6.4 Account page There should be a logout
button, that upon clicking logs
the user out

Pass 1:48

7.1 Login page There should be a login page
that allows existing users to
login

Pass 1:49

7.2 Login page There should be a form that
users can enter their email and
password

Pass 1:49

Arthur Robertson 184

Cryptica Social Media Analysis Application NEA

ID Component Test Result

Video
Times-
tamp

7.3 Login page Users attempting to login with
invalid credentials should be
shown an error message

Pass 1:59

7.4 Login page Users logging in with a correct
password should be redirected
to the account page

Pass 2:06

8.1 Account analysis
page

There should be an account
analysis page

Pass 2:10

8.2 Account analysis
page

On the page there should be a
form that has a username
input, and a dropdown
allowing a quantity of tweets
to be selected

Pass 2:10

8.3 Account analysis
page

After submitting the form,
graphs should populate the
page

Pass 2:27

8.4 Account analysis
page

There should be a pie chart
graph showing the distribution
of devices that the user has
used to tweet from

Pass 2:27

8.5 Account analysis
page

There should be a heatmap
showing the times that the
user has historically tweeted at

Pass 2:30

8.6 Account analysis
page

There should be a box
displaying how many followers
the user has, in addition to
other details such as the profile
picture and following count

Pass 2:27

Arthur Robertson 185

Cryptica Social Media Analysis Application NEA

ID Component Test Result

Video
Times-
tamp

9.1 Tweet analysis page There should be an individual
tweet analysis page

Pass 3:08

9.2 Tweet analysis page There should be a form that
has a field for entering a
username, and a select box for
choosing between one of
several cryptocurrencies to
search for

Pass 3:08

9.3 Tweet analysis page Once submitted, a list of
relevent tweets should be
displayed on the right side of
the page

Pass 3:16

9.4 Tweet analysis page The user should be able to
click on and select a tweet.
Doing so should reveal a new
section to the page

Pass 3:30

9.5 Tweet analysis page This section should contain a
graph that shows the selected
coins price at the time of the
tweet. The time of the tweet
should be highlighted on the
graph, showing the impact that
the tweet has had.

Pass 3:30

9.6 Tweet analysis page The predicted sentiment of the
tweet should be displayed in
this section

Pass 3:38

Arthur Robertson 186

Cryptica Social Media Analysis Application NEA

ID Component Test Result

Video
Times-
tamp

10.1 Ticker layout There should be a rotating
ticker below the menu bar the
displays the live price of
certain coins

Pass 4:18

10.2 Ticker layout Clicking on any of the coins in
the ticker should bring you to
the coins page

Pass 4:21

11.1 Authentication Only logged in users should be
able to access either of the
analysis pages

Pass 4:57

11.2 Authentication Only logged in users should be
able to comment on an article

Pass 4:32

11.3 Authentication Only logged in users should be
able to view a users profile

Pass 5:11

11.4 Authentication A button in the menu bar
should display either
“ACCOUNT” or “LOG IN”
depending on whether the
user is logged in or not

Pass 1:46

SERVER CODE TESTING

You can find in the below table the set of tests that I will be performing on some individual
functions and part of my code. Below the table, you will find evidence of each the tests.

Arthur Robertson 187

Cryptica Social Media Analysis Application NEA

Component Test Expected Result Test Data

RSA Test to generate an RSA
key

The RSA key generator
should produce a public
and private keypair

The keysize will be set
to 8 bits. This is so the
numbers are low and
easy to verify manually.

RSA Test to check RSA key is
valid by encrypting
plaintext using RSA
algorithm

The RSA public key
should be capable of
being used to encrypt a
value

The plaintext we will use
is 12345

RSA Test to check RSA key is
valid by decryption
cipher using RSA
algorithm

The RSA private key
should be able to
decrypt the cipher back
to the original plaintext
value using the formula

The ciphertext we will
use will be the result of
the previous step

Miller Rabin
Primality

Test to check the Miller
Rabin function can
identify whether a
number is prime

True should be returned
for each of the inputs

[100, 291, 949, 3107,
3615, 3693, 6381, 7869,
7913] - known non
primes

Miller Rabin
Primality

Test to check the Miller
Rabin function can
identify whether a
number is non prime

False should be
returned for each of the
inputs

[89, 857, 2473, 4273,
6029, 6791, 7789, 7823,
7901, 7919] - known
primes

Sentiment
Analysis
Model

Test positive input to
check whether the
model identifies the
input as positive

The model should
output a number
between 60% and 100%
to classify an item as
positive

The input “Bitcoin is so
cool! I think it is great”
will be inputted into the
model

Sentiment
Analysis
Model

Test negative input to
check whether the
model identifies the
input as negative

The model should
output a number
between 0% and 40% to
classify an item as
negative

The input “I think
Cryptocurrencies are so
stupid and a waste of
resources” will be
inputted into the model

Arthur Robertson 188

Cryptica Social Media Analysis Application NEA

Component Test Expected Result Test Data

Sentiment
Analysis
Model

Check accuracy of
model on training and
testing data

As outlined in the
objectives, ideally
above 75% accuracy

As outlined in the design
phase, I will use part of
the training dataset that
has been split off to test
and evaluate the model

JWT
Creation

Test to generate a JSON
Web Token with
supplied user data

JSON Web Token
Created that contains
encoded data, signed
with RSA private key

The following JSON
should be used: {'user
': test', 'email':
'test@test.com'}

JWT
Verification

Test to verify JSON Web
Token using a valid
signed token

JSON Web Token should
be initialised into class
object, which can then
be used to decode the
token to view it’s data

Token from previous
test should be used as
input

JWT
Verification

Invalid signed RSA The class should throw
an error stating that the
signature is invalid

Token from previous
step with a modified
signature should be
used

Base64
Encoding

Check that ascii text can
be base64 encoded

The test data input
should be returned
encoded using base64.
The validity of this can
be verified using a
number of online
base64 encoding tools

“hello”

Base64
Decoding

Check that base64 can
decode to ascii text

The base64 should be
decoded and returned
as ASCII

aGVsbG8= (base64 of
hello)

You can find how I’ve done each test and evidence for each one below.

Arthur Robertson 189

Cryptica Social Media Analysis Application NEA

RSA Testing

To test my RSA function works as intended, I will be testing it by generating very small RSA
keys which I can manually verify using the maths and algorithms I have described earlier. I
am using a keysize of 8 to test, which means that n is of a maximum size of (28)2, or 65536.

Figure 38: Screenshot of the test and generated keys

My program generated the pair 42588, 151 for the public key, and 42558, 26791 for the private
key.

Arthur Robertson 190

Cryptica Social Media Analysis Application NEA

Using the formula C = P e mod n, where C is the cipher text, and P is the plaintext, I am going
to attempt to encrypt the plaintext of 12345. Substituting the values into the formula gets the
following result:

C = 12345151 mod 42558
C = 27351

Figure 39: Screenshot of encryption calculation

Here we have calculated the cipher text to be 27351. Now to decrypt, we will use the formula
P = Cd mod n.

P = 2735126791 mod 42558
P = 12345

Figure 40: Screenshot of decryption calculation

We have now successfully proved that encryption and decryption works using RSA, as we
have got our original plaintext back.

Miller_Rabin Function Testing

The Miller_Rabin function should return True when a number is prime, and false when a
number is not prime. To test it, I supplied it with a list of known primes and non primes and
checked to ensure that the outputted result matched the expected result.

Arthur Robertson 191

Cryptica Social Media Analysis Application NEA

Figure 41: Screenshot of prime test

As you can see above, the test passed and the function correctly identified all the numbers as
prime or non prime.

Arthur Robertson 192

Cryptica Social Media Analysis Application NEA

Sentiment Analysis Model Testing

The function predict_sentiment outputs a number from 0 to 1 depending on the predicted
sentiment of the input. To calculate a percentage, the number should be times by 100. As
mentioned above, a value below 40% is considered negative, and above 60% positive.

First, I have tested the input Bitcoin is so cool! I think it is great with my
model. It successfully managed to predict the sentiment as positive, with a value of 75.99%.

Figure 42: Predicting sentiment of a Positive Input

Next, I entered a negative input into my predict_sentiment function. I used the input
I think Cryptocurrencies are so stupid and a waste of resources.

Figure 43: Predicting sentiment of a Negative Input

This time, the model predicted the negative text had a sentiment value of 38.46%. This is
close, but just below the 40% border, suggesting that the model could be improved further.

Finally, I evaluated the model using the built in evaluation tool. This tests it against the
designated test data which was split off from the original dataset.

Figure 44: Evaluating the Sentiment Analysis Model

Arthur Robertson 193

Cryptica Social Media Analysis Application NEA

The model achieved a test accuracy of 87.96%, with a loss of 0.292 The loss is a useful measure
of how well a model is performing. It is calculated based on training and validation data, and
is a summation of errors made for each example in the sets. It is used when optimising models.
My loss value and accuracy suggest that my model performs ok, but could be improved with
fine tuning and further training. For my purposes I consider my model successful.

JSON Web Token

Firstly, using the AccessToken class I defined in /api/core/security.py, I attempted to
initialise the class using the JSON data {'user': 'test', 'email': 'test@test.com
'}.

Figure 45: Generating a JSON Web Token using the AccessToken class

My class successfully created a JSON Web Token signed with my RSA private key. Using the
online JSON Web Debugging tool https://jwt.io, I was able to verify that the signature and
JSON Web Token was valid by inputting the token and my RSA public key.

Arthur Robertson 194

https://jwt.io

Cryptica Social Media Analysis Application NEA

Figure 46: Verifying the created JSON Web Token

Next, I attempted to initialise the AccessToken class using the JSON Web Token just created in
the previous step.

Arthur Robertson 195

Cryptica Social Media Analysis Application NEA

Figure 47: The token being verified using the AccessToken class

The class successfully verified the token using the RSA public key, and successfully decoded it
to get the original data inputted, proving the class works as intended.

Finally, I attempted to use the class with an invalid JSON Web Token. By changing the very
last character of the token created in the previous steps, the signature becomes invalid. When
attempting to initiate the class using this modified token, an error was thrown, proving that
only tokens with valid signatures can be verified and used.

Figure 48: Token with invalid signature being rejected

Base64

Using the Base64 class, I encoded the string ‘hello’, and got the output aGVsbG8=. This
matches the expected value, which can be verified online using a number of tools.

Then, I decoded the same string and got back the original input of ‘hello’. This proves the test
successful, and that the base64 encoder and decoder works as intended.

Arthur Robertson 196

Cryptica Social Media Analysis Application NEA

Figure 49: Base64 class encoding and decoding hello.

API TESTING

Testing my API server requires me to manually send multiple tests with different types of data
to each of the routes. I have organised my testing with the below table, which contains a
summary of what the test and expected result is. The table has been orientated horizontally
to fit on the page.

Arthur Robertson 197

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

1.
1

/a
ut

h/
lo

gi
n

Lo
gi

n
us

in
g

va
lid

cr
ed

en
tia

ls
PO

ST
em

ai
l:

te
st

in
g@

em
ai

l.c
om

,
pa

ss
w

or
d:

Te
st

in
g1

23
!

Us
er

cr
ed

en
tia

ls
m

at
ch

ed
ag

ai
ns

t
va

lu
es

in
da

ta
ba

se
us

in
g

ha
sh

in
g.

JS
ON

W
eb

To
ke

n
cr

ea
te

d
us

in
gu

se
rd

et
ai

ls,
an

d
sig

ne
d

us
in

g
RS

A
pr

iva
te

ke
y

JS
ON

W
eb

To
ke

n

Pa
ss

1.
2

/a
ut

h/
lo

gi
n

Lo
gi

n
us

in
g

in
va

lid
cr

ed
en

tia
ls

PO
ST

em
ai

l:
te

st
in

g@
em

ai
l.c

om
,

pa
ss

w
or

d:
In

va
lid

Pa
ss

w
or

d

Us
er

cr
ed

en
tia

ls
do

no
tm

at
ch

da
ta

ba
se

40
1

Un
au

-
th

or
ise

d
Er

ro
r

Pa
ss

1.
3

/a
ut

h/
lo

gi
n

Lo
gi

n
us

in
g

no
cr

ed
en

tia
ls

PO
ST

em
ai

l:
te

st
in

g@
em

ai
l.c

om
,

pa
ss

w
or

d:
No

ne

La
ck

of
de

ta
ils

,u
na

bl
e

to
ch

ec
kd

at
ab

as
ef

or
m

at
ch

40
1

Un
au

-
th

or
ise

d
Er

ro
r

Pa
ss

2.
1

/a
ut

h/
m

e
Re

qu
es

tw
ith

va
lid

au
th

en
tic

at
io

n
GE

T
au

th
en

tic
at

io
n:

us
er

/
ad

m
in

JS
ON

W
eb

To
ke

n
sig

na
tu

re
ve

rifi
ed

us
in

g
RS

A
Pu

bl
ic

Ke
y.

Us
er

da
ta

fro
m

to
ke

n
ex

ist
si

n
da

ta
ba

se

20
0O

K
Pa

ss

Arthur Robertson 198

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

2.
2

/a
ut

h/
m

e
Re

qu
es

tw
ith

in
va

lid
/

no
au

th
en

tic
at

io
n

GE
T

au
th

en
tic

at
io

n:
in

va
lid

/n
on

e
JS

ON
W

eb
To

ke
n

sig
na

tu
re

is
no

tv
al

id
40

1
Un

au
-

th
or

ise
d

Er
ro

r

Pa
ss

3.
1

/a
ut

h/
re

gi
st

er
Re

gi
st

ra
tio

n
w

ith
va

lid
da

ta
,n

o
ex

ist
in

g
ac

co
un

t

PO
ST

na
m

e:
va

lid
_n

am
e,

em
ai

l:
va

lid
_e

m
ai

l,
pa

ss
w

or
d:

va
lid

_p
as

sw
or

d

Su
pp

lie
d

us
er

de
ta

ils
ar

ei
ns

er
te

d
in

to
da

ta
ba

se
.J

SO
N

W
eb

To
ke

n
cr

ea
te

d
an

d
sig

ne
d

us
in

g
su

pp
lie

d
va

lu
es

an
d

RS
A

pr
iva

te
ke

y

JS
ON

W
eb

To
ke

n

Pa
ss

3.
2

/a
ut

h/
re

gi
st

er
Re

gi
st

ra
tio

n
w

ith
va

lid
da

ta
,a

lre
ad

ye
xis

tin
g

ac
co

un
t

PO
ST

na
m

e:
va

lid
_n

am
e,

em
ai

l:
va

lid
_e

m
ai

l,
pa

ss
w

or
d:

va
lid

_p
as

sw
or

d

Su
pp

lie
d

us
er

de
ta

ils
al

re
ad

ye
xis

ti
n

da
ta

ba
se

,e
rro

r
th

ro
w

n

40
9

Co
nfl

ict
Er

ro
r

Pa
ss

3.
3

/a
ut

h/
re

gi
st

er
Re

gi
st

ra
tio

n
w

ith
in

va
lid

/n
ul

ld
at

a
PO

ST
na

m
e:

in
va

lid
_n

am
e/

no
ne

,e
m

ai
l:

in
va

lid
_e

m
ai

l/
no

ne
,

pa
ss

w
or

d:
in

va
lid

_p
as

sw
or

d
/

no
ne

De
ta

ils
do

no
tm

ee
t

re
qu

ire
m

en
ts

,t
hr

ow
er

ro
r

42
2

In
va

lid
Er

ro
r

Pa
ss

Arthur Robertson 199

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

4.
1

/c
ry

pt
o/

{T
IC

KE
R}

/{T
IM

E}
Re

qu
es

tin
g

cr
yp

to
cu

rre
nc

yd
at

a
w

ith
va

lid
da

ta

GE
T

tic
ke

r:
BT

CU
SD

T,
tim

e:
16

40
99

52
00

Bi
na

nc
eA

PI
ca

lle
d

fro
m

th
es

er
ve

r,
da

ta
fro

m
su

pp
lie

d
tim

e
un

til
an

ho
ur

la
te

ri
s

fe
tc

he
d

an
d

re
tu

rn
ed

Pr
ice

da
ta

re
-

tu
rn

ed
in

OH
CL

fo
rm

at

Pa
ss

4.
2

/c
ry

pt
o/

{T
IC

KE
R}

/{T
IM

E}
Re

qu
es

tin
g

cr
yp

to
cu

rre
nc

yd
at

a
w

ith
in

va
lid

/n
ul

ld
at

a

GE
T

tic
ke

r:
in

va
lid

_t
ic

ke
r/

no
ne

,t
im

e:
in

va
lid

_t
im

e/
no

ne

Bi
na

nc
eA

PI
th

ro
w

sa
n

er
ro

rw
hi

ch
is

ha
nd

le
d

40
0

Er
ro

r
Pa

ss

5.
1

/n
ew

s
Re

qu
es

tin
g

lis
to

f
ne

w
s

GE
T

No
ne

Ne
w

sf
et

ch
ed

fro
m

da
ta

ba
se

us
in

g
qu

er
y

Li
st

of
ne

w
s

Pa
ss

5.
2

/n
ew

s
Cr

ea
tin

g
a

ne
w

ne
w

s
ar

tic
le

en
tr

ya
sa

n
au

th
en

tic
at

ed
ad

m
in

PO
ST

au
th

en
tic

at
io

n:
ad

m
in

Us
er

ad
m

in
st

at
us

is
ch

ec
ke

d,
th

en
ne

w
s

in
se

rte
d

in
to

da
ta

ba
se

20
0O

K,
ID

of
ne

w
ar

tic
le

Pa
ss

5.
3

/n
ew

s
Cr

ea
tin

g
a

ne
w

ne
w

s
ar

tic
le

en
tr

ya
sa

us
er

/u
na

ut
he

nt
ica

te
d

PO
ST

au
th

en
tic

at
io

n:
us

er
/

in
va

lid
/n

on
e

Us
er

ad
m

in
st

at
us

is
in

va
lid

,e
rro

rt
hr

ow
n

40
1

Un
au

-
th

or
ise

d
Er

ro
r

Pa
ss

Arthur Robertson 200

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

6.
1

/n
ew

s/
{ID

}
Re

qu
es

tin
g

a
va

lid
ID

ar
tic

le
in

fo
GE

T
id

:v
al

id
_i

d
Sp

ec
ifi

ed
ne

w
si

d
is

se
le

ct
ed

fro
m

th
e

da
ta

ba
se

an
d

re
tu

rn
ed

Fu
ll

de
ta

ils
ab

ou
t

ar
tic

le

Pa
ss

6.
2

/n
ew

s/
{ID

}
Re

qu
es

tin
g

an
in

va
lid

/n
on

ex
ist

in
g

ID
ar

tic
le

in
fo

GE
T

id
:i

nv
al

id
_i

d
Sp

ec
ifi

ed
ne

w
si

d
ca

n
no

tb
ef

ou
nd

in
th

e
da

ta
ba

se
,n

ot
hi

ng
re

tu
rn

ed

40
4N

ot
fo

un
d

Er
ro

r

Pa
ss

7.
1

/n
ew

s/
{ID

}/c
om

m
en

ts
Re

qu
es

tin
g

lis
to

f
co

m
m

en
ts

on
va

lid
ar

tic
le

GE
T

id
:v

al
id

_i
d

Sp
ec

ifi
ed

ne
w

si
d

is
se

le
ct

ed
fro

m
th

e
da

ta
ba

se
an

d
co

m
m

en
ts

re
tu

rn
ed

us
in

g
jo

in
st

at
em

en
t

Li
st

of
co

m
-

m
en

ts

Pa
ss

7.
2

/n
ew

s/
{ID

}/c
om

m
en

ts
Re

qu
es

tin
g

lis
to

f
co

m
m

en
ts

on
in

va
lid

ar
tic

le

GE
T

id
:i

nv
al

id
_i

d
Sp

ec
ifi

ed
ne

w
si

d
ca

n
no

tb
ef

ou
nd

in
th

e
da

ta
ba

se
,n

ot
hi

ng
re

tu
rn

ed

40
4N

ot
fo

un
d

Er
ro

r

Pa
ss

7.
3

/n
ew

s/
{ID

}/c
om

m
en

ts
Cr

ea
tin

g
a

ne
w

co
m

m
en

to
n

a
va

lid
ar

tic
le

as
an

au
th

en
tic

at
ed

us
er

PO
ST

id
:v

al
id

_i
d,

au
th

en
tic

at
io

n:
us

er
/

ad
m

in
,c

om
m

en
t:

co
m

m
en

tc
on

te
nt

Co
m

m
en

ti
ns

er
te

d
in

to
co

m
m

en
ts

ta
bl

e
us

in
g

su
pp

lie
d

da
ta

20
0O

K
Pa

ss

Arthur Robertson 201

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

7.
4

/n
ew

s/
{ID

}/c
om

m
en

ts
Cr

ea
tin

g
a

ne
w

co
m

m
en

to
n

a
va

lid
ar

tic
le

as
an

un
au

th
en

tic
at

ed
us

er

PO
ST

id
:v

al
id

_i
d,

au
th

en
tic

at
io

n:
no

ne
/

in
va

lid
,c

om
m

en
t:

co
m

m
en

tc
on

te
nt

Au
th

en
tic

at
io

n
fo

un
d

be
in

va
lid

,e
rro

r
th

ro
w

n

40
1

Un
au

-
th

or
ise

d
Er

ro
r

Pa
ss

8.
1

/n
ew

s/
{ID

}/c
om

m
en

ts
/{C

OM
M

EN
T_

ID
}

Au
th

en
tic

at
ed

us
er

de
le

tin
g

th
ei

ro
w

n
co

m
m

en
t

DE
LE

TE
au

th
en

tic
at

io
n:

co
m

m
en

t_
au

th
or

,id
:

va
lid

_i
d,

co
m

m
en

t_
id

:
va

lid
_c

om
m

en
t_

id

Au
th

en
tic

at
io

n
ch

ec
ke

d
th

at
it

m
at

ch
es

th
ec

om
m

en
t

au
th

or
ID

,c
om

m
en

t
dr

op
pe

d
fro

m
da

ta
ba

se

20
0O

K
Pa

ss

8.
2

/n
ew

s/
{ID

}/c
om

m
en

ts
/{C

OM
M

EN
T_

ID
}

Au
th

en
tic

at
ed

us
er

de
le

tin
ga

no
th

er
us

er
s

co
m

m
en

t

DE
LE

TE
au

th
en

tic
at

io
n:

no
n_

co
m

m
en

t_
au

th
or

,
id

:v
al

id
_i

d,
co

m
m

en
t_

id
:

va
lid

_c
om

m
en

t_
id

Au
th

en
tic

at
io

n
ch

ec
ke

d
an

d
ID

do
es

no
tm

at
ch

th
ea

ut
ho

r
ID

40
1

Un
au

-
th

or
ise

d
Er

ro
r

Pa
ss

8.
3

/n
ew

s/
{ID

}/c
om

m
en

ts
/{C

OM
M

EN
T_

ID
}

Au
th

en
tic

at
ed

ad
m

in
de

le
tin

ga
no

th
er

us
er

s
co

m
m

en
t

DE
LE

TE
au

th
en

tic
at

io
n:

ad
m

in
,id

:v
al

id
_i

d,
co

m
m

en
t_

id
:

va
lid

_c
om

m
en

t_
id

Au
th

en
tic

at
io

n
ch

ec
ke

d
to

be
of

ad
m

in
st

at
us

,
co

m
m

en
td

ro
pp

ed

20
0O

K
Pa

ss

Arthur Robertson 202

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

9.
1

/n
ew

s/
co

m
m

en
ts

Au
th

en
tic

at
ed

ad
m

in
re

qu
es

tin
g

al
l

co
m

m
en

ts

GE
T

au
th

en
tic

at
io

n:
ad

m
in

Au
th

en
tic

at
io

n
is

a
va

lid
ad

m
in

,a
ll

us
er

s
se

le
ct

ed
fro

m
da

ta
ba

se
w

he
re

ad
m

in
=t

ru
e

Al
lc

om
-

m
en

ts
in

da
ta

ba
se

Pa
ss

9.
2

/n
ew

s/
co

m
m

en
ts

Us
er

/
un

au
th

en
tic

at
ed

us
er

re
qu

es
tin

g
al

l
co

m
m

en
ts

GE
T

au
th

en
tic

at
io

n:
us

er
/

no
ne

Au
th

en
tic

at
io

n
is

no
t

ad
m

in
st

at
us

,e
rro

r
th

ro
w

n

40
1

Un
au

-
th

or
ise

d
Er

ro
r

Pa
ss

10
.1

/n
ew

s/
se

ar
ch

Se
ar

ch
re

qu
es

tf
or

a
sp

ec
ifi

ed
ph

ra
se

PO
ST

se
ar

ch
_t

er
m

:t
er

m
Da

ta
ba

se
se

ar
ch

ed
us

in
g

co
m

pl
ex

se
le

ct
qu

er
y,

al
lm

at
ch

in
g

en
tri

es
re

tu
rn

ed

Al
l

ar
tic

le
s

th
at

ha
ve

co
nt

en
t

m
at

ch
-

in
g

te
rm

,
if

an
y

Pa
ss

Arthur Robertson 203

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

11
.1

/tw
itt

er
/s

ea
rc

h
Au

th
en

tic
at

ed
us

er
se

ar
ch

in
g

fo
rt

w
ee

ts
m

at
ch

in
g

sp
ec

ifi
ed

ar
gu

m
en

ts

PO
ST

au
th

en
tic

at
io

n:
us

er
,

se
ar

ch
_t

er
m

:t
er

m
,

us
er

:u
se

rn
am

e,
co

un
t:

nu
m

be
r

Au
th

en
tic

at
io

n
va

lid
,

tw
itt

er
AP

Ii
ss

ea
rc

he
d

us
in

g
sp

ec
ifi

ed
qu

er
y

ar
gu

m
en

ts
.I

fa
ny

m
at

ch
in

g
re

su
lts

fo
un

d,
re

tu
rn

ed

Al
l

tw
ee

ts
fo

un
d

fro
m

tw
itt

er
AP

I
m

at
ch

-
in

g
ar

gu
-

m
en

ts
,if

an
y

Pa
ss

11
.2

/tw
itt

er
/s

ea
rc

h
Un

at
he

nt
ica

te
d

us
er

se
ar

ch
in

g
fo

rt
w

ee
ts

PO
ST

au
th

en
tic

at
io

n:
no

ne
Au

th
en

tic
at

io
n

in
va

lid
,

er
ro

rt
hr

ow
n

40
1

Un
au

-
th

or
ise

d
Er

ro
r

Pa
ss

12
.1

/u
se

rs
Au

th
en

tic
at

ed
ad

m
in

re
qu

es
tin

g
al

lu
se

rs
GE

T
au

th
en

tic
at

io
n:

ad
m

in
Au

th
en

tic
at

io
n

is
ad

m
in

st
at

us
,a

ll
us

er
s

se
le

ct
ed

an
d

re
tu

rn
ed

fro
m

da
ta

ba
se

Li
st

of
al

lu
se

rs
fro

m
da

ta
ba

se
re

-
tu

rn
ed

Pa
ss

Arthur Robertson 204

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

12
.2

/u
se

rs
Au

th
en

tic
at

ed
ad

m
in

cr
ea

tin
g

ne
w

us
er

PO
ST

au
th

en
tic

at
io

n:
ad

m
in

,u
se

r:
ne

w
_u

se
r_

da
ta

Au
th

en
tic

at
io

n
is

ad
m

in
st

at
us

,u
se

ri
s

in
se

rte
d

in
to

da
ta

ba
se

if
it

do
es

no
ta

lre
ad

y
ex

ist

Ne
w

Us
er

ID
Pa

ss

13
.1

/u
se

rs
/{I

D}
Au

th
en

tic
at

ed
ad

m
in

re
qu

es
tin

g
us

er
in

fo
GE

T
au

th
en

tic
at

io
n:

ad
m

in
,id

:
va

lid
_u

se
r_

id

Au
th

en
tic

at
io

n
is

ad
m

in
st

at
us

,u
se

ri
s

se
le

ct
ed

an
d

re
tu

rn
ed

fro
m

th
ed

at
ab

as
e

Us
er

De
ta

ils
Pa

ss

13
.2

/u
se

rs
/{I

D}
Au

th
en

tic
at

ed
ad

m
in

m
od

ify
in

g
us

er
in

fo
PU

T
au

th
en

tic
at

io
n:

ad
m

in
,id

:
va

lid
_u

se
r_

id
us

er
:

ne
w

_u
se

r_
da

ta

Au
th

en
tic

at
io

n
is

ad
m

in
st

at
us

,u
se

ri
s

m
od

ifi
ed

in
th

e
da

ta
ba

se
w

ith
th

e
ne

w
su

pp
lie

d
de

ta
ils

Ne
w

Us
er

De
ta

ils

Pa
ss

13
.3

/u
se

rs
/{I

D}
Au

th
en

tic
at

ed
ad

m
in

de
le

tin
g

a
us

er
DE

LE
TE

au
th

en
tic

at
io

n:
ad

m
in

,id
:

va
lid

_u
se

r_
id

Au
th

en
tic

at
io

n
is

ad
m

in
st

at
us

,
sp

ec
ifi

ed
us

er
is

dr
op

pe
d

fro
m

th
e

ta
bl

e

20
0O

K
Pa

ss

Arthur Robertson 205

Cryptica Social Media Analysis Application NEA

ID
AP

IE
nd

po
in

t
De

sc
rip

tio
n

HT
TP

M
et

ho
d

Te
st

Da
ta

Se
rv

er
Pr

oc
es

sin
g

Ex
pe

ct
ed

AP
IR

e-
sp

on
se

Pa
ss

/F
ai

l

14
.1

/u
se

rs
/{I

D}
/p

ro
fil

e
Au

th
en

tic
at

ed
us

er
re

qu
es

tin
g

a
us

er
’s

pr
ofi

le

GE
T

au
th

en
tic

at
io

n:
us

er
,

id
:v

al
id

_u
se

r_
id

Us
er

is
au

th
en

tic
at

ed
.

Qu
er

yr
un

st
o

se
le

ct
so

m
eb

as
ic

us
er

in
fo

rm
at

io
n

fro
m

th
e

us
er

ta
bl

e,
an

d
al

ist
of

th
eu

se
r’s

co
m

m
en

ts
an

d
th

ea
rti

cl
es

th
at

th
ec

om
m

en
ts

ar
e

fro
m

us
in

g
in

ne
rj

oi
n.

Th
is

is
re

tu
rn

ed
as

a
JS

ON
ob

je
ct

Us
er

De
ta

ils
an

d
Co

m
-

m
en

ts

Pa
ss

15
.1

/u
se

rs
/a

dm
in

Au
th

en
tic

at
ed

ad
m

in
re

qu
es

tin
g

a
lis

to
f

ad
m

in
ist

ra
to

r
ac

co
un

ts

GE
T

au
th

en
tic

at
io

n:
ad

m
in

Au
th

en
tic

at
io

n
is

ad
m

in
st

at
us

,a
ll

us
er

s
fro

m
da

ta
ba

se
w

ho
ar

ea
dm

in
ar

e
se

le
ct

ed
an

d
re

tu
rn

ed

Li
st

of
ad

m
in

s
Pa

ss

16
.1

/u
se

rs
/c

ou
nt

Au
th

en
tic

at
ed

ad
m

in
re

qu
es

tin
g

a
co

un
to

f
al

lu
se

rs

GE
T

au
th

en
tic

at
io

n:
ad

m
in

Au
th

en
tic

at
io

n
is

ad
m

in
st

at
us

,u
sin

g
co

un
ta

gg
re

ga
te

SQ
L

fu
nc

tio
n,

nu
m

be
ro

f
us

er
sa

re
re

tu
rn

ed

Nu
m

be
r

of
us

er
s

Pa
ss

Arthur Robertson 206

Cryptica Social Media Analysis Application NEA

Evidence

I have included evidence for all of the above tests. You can find the evidence by matching the ID
in the table with the corresponding test below. The evidence comes in two parts, the request
and response. The request is the data sent to the API server, in the form of a HTTP request. The
response is what the server replies with. I have used the HTTP Testing tool Postman to test,
and the screenshots below are all from that. Some of the responses are long and as a result are
not all visible in the screenshots. Some of the requests also contain variables. {{baseUrl}}
refers to the URL that the API server is accessible from. In my case it was running locally, so
the URL was http://localhost:8000. [USER_TOKEN] and [ADMIN_TOKEN] refer to two
JSON Web Tokens that my server has created that can authenticate either a user or an admin.
In the case of these tests, it means that when either feature in the headers of the request, that
the user is authenticated.

1.1 Request

1 POST /api/auth/login HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 67
6
7 {
8 "email": "testing@email.com",
9 "password": "Testing123!"

10 }

Response

1.2 Request

Arthur Robertson 207

Cryptica Social Media Analysis Application NEA

1 POST /api/auth/login HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 71
6
7 {
8 "email": "testing@email.com",
9 "password": "InvalidPassword"

10 }

Response

1.3 Request

1 POST /api/auth/login HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 39
6
7 {
8 "email": "",
9 "password": ""

10 }

Response

2.1 Request

Arthur Robertson 208

Cryptica Social Media Analysis Application NEA

1 GET /api/auth/me HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [USER_TOKEN]

Response

2.2 Request

1 GET /api/auth/me HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

3.1 Request

1 POST /api/auth/register HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 137
6
7 {
8 "email": "testingemail@aqa.org.uk",
9 "password": "SecurePassword123!",

Arthur Robertson 209

Cryptica Social Media Analysis Application NEA

10 "first_name": "testing",
11 "last_name": "testing example"
12 }

Response

3.2 Request

1 POST /api/auth/register HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 127
6
7 {
8 "email": "test@test.com",
9 "password": "SecurePassword123!",

10 "first_name": "testing",
11 "last_name": "testing example"
12 }

Response

Arthur Robertson 210

Cryptica Social Media Analysis Application NEA

3.3 Request

1 POST /api/auth/register HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 74
6
7 {
8 "email": "",
9 "password": "",

10 "first_name": "",
11 "last_name": ""
12 }

Response

4.1 Request

1 GET /api/crypto/BTCUSDT/1633046400 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

Arthur Robertson 211

Cryptica Social Media Analysis Application NEA

4.2 Request

1 GET /api/crypto/invalid/1633046400 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

5.1 Request

1 GET /api/news/ HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

Arthur Robertson 212

Cryptica Social Media Analysis Application NEA

5.2 Request

1 POST /api/news HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Authorization: Bearer [ADMIN_TOKEN]
6 Content-Length: 185
7
8 {
9 "publication": "test",

10 "author": "test",
11 "title": "test",
12 "description": "test",
13 "content": "test",
14 "url": "test",
15 "imageUrl": "test",
16 "date": "test"
17 }

Response

Arthur Robertson 213

Cryptica Social Media Analysis Application NEA

5.3 Request

1 POST /api/news HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 185
6
7 {
8 "publication": "test",
9 "author": "test",

10 "title": "test",
11 "description": "test",
12 "content": "test",
13 "url": "test",
14 "imageUrl": "test",
15 "date": "test"
16 }

Response

6.1 Request

1 GET /api/news/100 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Arthur Robertson 214

Cryptica Social Media Analysis Application NEA

Response

6.2 Request

1 GET /api/news/100000 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

7.1 Request

1 GET /api/news/814/comments HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

Arthur Robertson 215

Cryptica Social Media Analysis Application NEA

7.2 Request

1 GET /api/news/999/comments HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

7.3 Request

1 POST /api/news/814/comments HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Authorization: Bearer [USER_TOKEN]
6 Content-Length: 36
7
8 {
9 "content": "testing comment"

10 }

Response

Arthur Robertson 216

Cryptica Social Media Analysis Application NEA

7.4 Request

1 POST /api/news/814/comments HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 36
6
7 {
8 "content": "testing comment"
9 }

Response

8.1 Request

1 DELETE /api/news/814/comments/31 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [USER_TOKEN]

Response

Arthur Robertson 217

Cryptica Social Media Analysis Application NEA

8.2 Request

1 DELETE /api/news/814/comments/33 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [USER_TOKEN]

Response

8.3 Request

1 DELETE /api/news/814/comments/32 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [ADMIN_TOKEN]

Response

9.1 Request

Arthur Robertson 218

Cryptica Social Media Analysis Application NEA

1 GET /api/news/comments/ HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [ADMIN_TOKEN]

Response

9.2 Request

1 GET /api/news/comments/ HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

10.1 Request

Arthur Robertson 219

Cryptica Social Media Analysis Application NEA

1 POST /api/news/search HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Content-Length: 27
6
7 {
8 "phrase": "bitcoin"
9 }

Response

11.1 Request

1 GET /api/twitter/search?coin=Bitcoin&username=elonmusk HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [USER_TOKEN]

Response

Arthur Robertson 220

Cryptica Social Media Analysis Application NEA

11.2 Request

1 GET /api/twitter/search?coin=Bitcoin&username=elonmusk HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json

Response

12.1 Request

1 GET /api/users/ HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [ADMIN_TOKEN]

Response

Arthur Robertson 221

Cryptica Social Media Analysis Application NEA

12.2 Request

1 POST /api/users/ HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Authorization: Bearer [ADMIN_TOKEN]
6 Content-Length: 158
7
8 {
9 "email": "testingemail2@aqa.org.uk",

10 "password": "SecurePassword123!",
11 "first_name": "testing",
12 "last_name": "testing example",
13 "admin": "false"
14 }

Response

Arthur Robertson 222

Cryptica Social Media Analysis Application NEA

13.1 Request

1 GET /api/users/10 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [ADMIN_TOKEN]

Response

13.2 Request

1 PUT /api/users/10 HTTP/1.1
2 Host: {{baseUrl}}
3 Content-Type: application/json
4 Accept: application/json
5 Authorization: Bearer [ADMIN_TOKEN]
6 Content-Length: 178
7

Arthur Robertson 223

Cryptica Social Media Analysis Application NEA

8 {
9 "password": "testing",

10 "email": "newemail@email.com",
11 "new_password": "newpassword",
12 "admin": false,
13 "first_name": "labore aute dolor",
14 "last_name": "sunt labore"
15 }

Response

13.3 Request

1 DELETE /api/users/10 HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [ADMIN_TOKEN]

Response

14.1 Request

1 GET /api/users/94/profile HTTP/1.1

Arthur Robertson 224

Cryptica Social Media Analysis Application NEA

2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [USER_TOKEN]

Response

15.1 Request

1 GET /api/users/admins HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [ADMIN_TOKEN]

Response

Arthur Robertson 225

Cryptica Social Media Analysis Application NEA

15.2 Request

1 GET /api/users/count HTTP/1.1
2 Host: {{baseUrl}}
3 Accept: application/json
4 Authorization: Bearer [ADMIN_TOKEN]

Response

XSS and SQL Injection Testing

I have tested a selection of routes explicitly for XSS and SQL injection, in addition to further
tests.

Arthur Robertson 226

Cryptica Social Media Analysis Application NEA

Logging In I tested the login endpoint extensively with several SQL injection strings. All of
them failed to work.

Figure 50: Screenshot of SQL Injection test

Registering I attempted to register with an account that included a common SQL and XSS
injection string. I was able to create the account, however the SQL and XSS was not executed.
As you can see below, the <script>alert()</script> is not embedded into the page,
meaning that the application has successfully protected against injection.

Figure 51: Screenshot of XSS Injection test

Arthur Robertson 227

Cryptica Social Media Analysis Application NEA

Posting Comments I tried inputting a variety of injection inputs to attempt to inject SQL or
JavaScript into my page. All of them failed, and the SQL and XSS injection protection proved
successful.

Figure 52: Screenshot of XSS Injection test

EVALUATION

OBJECTIVE COMPLETION

When I worked through the implementation and design phase of my project, I kept my objec-
tives in mind at all time. This allowed me to complete almost all of them to a successful level.

Arthur Robertson 228

Cryptica Social Media Analysis Application NEA

You can see the table below where I have

Objective Status

There should be a publicly accessible web application that
allows the client to access the etc

Success, website is
publicly accessible.

There should be two main components to the web application,
a front end client and a back end API. The front end client
should interact with the API and should be what the user
interacts with. The API should handle all the
fetching/processing of data, as well as any other functionality
such as database management with CRUD.

Success, there is a separate
API server and Client
application.

The API should be capable of securely authentication users for
the front end app. My client has specified that he would like
anyone to be able to login and register for an account, so that
he can share the application with his like-minded friends.
Therefore, the API should be capable of handling multiple
concurrent users having accounts, and should be able to
authenticate and distinguish between them.

Success, there is login and
registration functionality
implemented. Support for
multiple accounts.

The API should interact with the front end client application to
ensure that users remain authenticated between sessions.
Users should be able to login and then have to not enter their
password again for a reasonable amount of time. This could be
done through a method such as sessions, or cookie token
generation.

Success, the client
application makes
requests to the API
automatically. The API
generates a JSON Web
Token for authentication
which is stored in the
user’s cookies.

The RSA algorithm should be used to sign the JSON Web Tokens.
To do this, I will need to have an RSA key. Part of the program
should be able to create RSA keys for use in this functionality.

Success, a valid and secure
RSA Key is generated and
used in the program.

The users data and passwords should securely be stored in a
database. A secure, modern password hashing algorithm
should be used, that uses hash salting to protect against
attacks.

Success, the Argon2
password hashing
algorithm has been used,
which uses salting.

Arthur Robertson 229

Cryptica Social Media Analysis Application NEA

Objective Status

The API should be capable of fetching and processing a
specified users tweets from Twitter’s API. It should be able to
perform sentiment analysis on the tweet’s content, and return
the information to the user.

Success, the API is capable
of fetching tweets and the
client successfully displays
them.

The API should have a database table that stores a collection of
recent relevant news articles. The frontend client should then
be able to display these articles for easy access. The news
articles should ideally come from a variety of sources through
web scraping. Only a brief excerpt of the article needs to be
stored and displayed - to read the full article the users should
be directed to the original site. Alternatively, the news articles
should be fetched from an existing third party API that offers a
service.

Partial Success, there is a
database table containing
hundreds of fetched news
stories from an API.
Building a website scraper
for multiple different news
sites was not feasible. The
articles are successfully
displayed to the user.

There should be a page that displays a list of the top 50 coins by
market cap. It should display live data showing the price and
other statistics about the coins. You should be able to click on
any of the coins and it should take you to another page,
showing further information about the coins performance. This
should include a graph of the coins performance over time, and
a brief description of the coin. In addition, on the specific coin
page it should show a list of relevant articles stored in the
database relating to the coin. If no such articles are found, it
should not display any.

Success, there is a coins
page that displays live
cryptocurrency price data.
Users can click and visit a
page about a specific coin,
and see related news
articles.

Logged in users should be able to comment on any of the news
articles, and anyone should be able to view said comments.
Admin accounts should be able to delete any users comments,
and users should be able to delete their own comments.

Success, the API is capable
of checking if a user is
authenticated. Only
logged in users can
comment. In addition,
users can delete their own
comments, and admin
accounts can delete any
users comments.

Arthur Robertson 230

Cryptica Social Media Analysis Application NEA

Objective Status

There should be a basic profile functionality. Users should be
able to view a users profile, and view information such as all
their historic comments on articles.

Success, users can click on
each others names to view
a profile containing all a
users comments.

The application should be secure against malicious parties. It
should not be vulnerable to common flaws such as SQL or XSS
(cross site scripting) injection, and users should not be able to
bypass authentication methods implemented, e.g. viewing
pages that are behind an authentication wall.

Success, in the testing
phase I performed checks
for SQL and XSS injection
against the API. Users are
also not able to bypass the
authentication wall.

The application should contain analysis page for users tweets,
that allows someone to input a users Twitter username. Then,
they should be able to view a list of tweets, and should be able
to see information on how the tweet has impacted the
cryptocurrency market. It should display a candlestick graph
that displays the price of the relevant cryptocurrency before
and after the tweet. This page should also show the predicted
sentiment of the tweet - whether the tweets content is positive
or negative.

Success, the tweet analysis
page successfully displays
the information required.

The analysis page should also offer some basic analysis on the
user’s Twitter account as a whole. It should be able to produce
a heat map of the time the user is typically active on Twitter,
based on the time the user has tweeted previously. It should
also display what device the user uses in the form of a pie chart,
for example if the user is tweeting from an iPhone or from a
computer.

Success, the user analysis
page successfully displays
the information required.

Arthur Robertson 231

Cryptica Social Media Analysis Application NEA

Objective Status

The tweets analysis page should be able to perform some basic
sentiment analysis on the user’s tweets contents. It should
attempt to estimate whether a tweet is positive or negative, and
this should then be displayed to the user. For this, a neural
network should be implemented using a Python deep learning
library such as TensorFlow. The neural network should aim to
have an accuracy of around 75%+. This objective is ambitious
and primarily an extension that I should complete if I have
enough time. Failing that, it should use an existing third party
API for analysing sentiment, rather than creating my own
sentiment model.

Success, the API returns a
value for sentiment based
on the response from the
model. The model has an
accuracy of approximately
85%, as evaluated by the
test function.

The website should be fast to respond. This can be measured
using Google’s Lighthouse page score metrics, which is a service
that returns a value on how fast the page performs. I want to
aim for a score of 90-100, which is considered ‘excellent’.

Success, the page score is
above 90 as seen in the
testing phase.

FEEDBACK FROM CLIENT

The feedback from my client was all positive. They expressed their appreciation of all their
requests being implemented, and asked for no additional changes at this time.

POSSIBLE EXTENSIONS

The application has capabilities to be developed further if required by my client. There are
several different extensions that could be implemented:

• As mentioned in the design phase, there are several additional security measures that
could be implemented. One that I would recommend to be completed as a priority is
some form of multi-factor authentication to offer an additional layer of protection to
the applications users.

– This would be complicated to implement, as would involve partially recreating
the authentication flow. Measures such as email and SMS authentication would

Arthur Robertson 232

Cryptica Social Media Analysis Application NEA

likely require the use of a third party API, which would likely cost money. Whilst
the complexity and difficulty of this extension is high, it is of quite high importance
so should ideally be implemented as soon as feasible.

• The social aspect of the application could be developed further. Additional functionality
such as the ability for users to post on a forum could be added.

– This would simply involve creating a few more API routes that take advantage of
the database class. This should not take too long to implement.

• The program could be expanded to be able to analyse stocks and other investments
outside of cryptocurrencies.

– The main challenge prevention an expansion to other commodities such as stocks,
is the lack of freely available price data. If there was a budget and a subscription
to a paid stock data API was purchases, this would be fairly easy to implement.
However, it would be difficult to implement without a cost.

• The administration utilities could be expanded. Additionally functionality such as the
ability to ban and delete users accounts directly from the application could be added.

– This would require the creation of several new CRUD routes, which should be fairly
easy to implement by making use of the existing classes.

• Further logging and analytics could be implemented. The application could integrate
with Google Analytics or any other analytic tool to provide information about the demo-
graphic and quantity of users using the application.

– This would be fairly easy to implement - to add Google Analytics to the program it
would just require the provided analytics JavaScript tracking code to be injected
to the head section of each page.

• A mobile application could be developed for iPhone and Android. The backend API func-
tionality would not need to be changed for this, it would simply require the development
of a mobile client.

– This would be fairly easy to implement. There are many frameworks now such as
React Native, that allow the easy conversion of websites to mobile applications.

• The random number generator in the RSA key generation could be upgraded to use a
CSPRNG (Cryptographically-secure Pseudorandom number generator)

Arthur Robertson 233

Cryptica Social Media Analysis Application NEA

– This would be complex to implement, but should be considered very important for
any program of enterprise level security. The default random number generator is
not “true random”, which in some rare situations make it vulnerable to attacks.

Arthur Robertson 234

	ANALYSIS
	DESCRIPTION OF PROJECT
	BACKGROUND ANALYSIS
	INTERVIEW WITH CLIENT
	CURRENT SYSTEM
	PROPOSED SYSTEM
	OBJECTIVES
	OBJECTIVES COMPLEXITY AND LIMITATIONS
	Security
	API Data Resolution
	Neural Networks
	User Interface Design
	News Article Scraping

	AUTHENTICATION
	HTTP Basic Authentication
	HTTP Digest Authentication
	Session Based Authentication
	Token Based Authentication
	OAuth
	Conclusion

	USER IDENTIFICATION
	TECHNICAL SOLUTIONS
	Next.js
	FastAPI
	TensorFlow and Neural Networks
	Twint
	Binance API
	Argon2
	PostgreSQL
	TailwindCSS

	DESIGN
	OVERALL DESIGN
	FRONTEND PAGES
	API ROUTES
	INPUT PROCESS STORAGE OUTPUT CHART
	FORM STRUCTURE
	Login Form
	Registration Form

	DATA DICTIONARY
	ENTITY RELATIONSHIP DIAGRAM
	SQL QUERIES PLAN
	CLASS DIAGRAMS
	USER INTERFACE
	COMMON SECURITY VULNERABILITIES AND MITIGATION
	SQL Injection
	Cross Site Scripting
	Broken Access Control

	SECURITY MEASURES
	JSON Web Tokens and RSA
	JWT
	Authentication Walls
	API Server Security
	Testing Phase
	Additional Possible Measures

	BACKUPS
	SENTIMENT ANALYSIS
	Algorithm
	Dataset
	Training
	Exporting

	SERVER HARDWARE
	Client Frontend
	API Server and Database

	ALGORITHM DESIGN
	Sentiment Analysis
	Authentication
	RSA (Rivest–Shamir–Adleman) Key Generator
	Base64

	TEST PLAN

	IMPLEMENTATION
	TABLE OF FILES
	ADVANCED TECHNIQUES
	ANNOTATED PROGRAM FILES
	api/main.py
	api/api/auth.py
	api/api/crypto.py
	api/api/news.py
	api/api/twitter.py
	api/api/users.py
	api/core/auth.py
	api/core/binance.py
	api/core/security.py
	api/db/crud.py
	api/db/schemas.py
	api/utils/base64.py
	api/utils/sentiment.py
	server/rsa/keygen.py
	server/news/update.py
	server/sentiment/train.py
	client/pages/account/index.js
	client/pages/tweet-analysis/index.js
	client/pages/coin/index.js
	client/page/coin/[id].js
	client/page/account-analysis/index.js
	client/pages/login/index.js
	client/page/register/index.js
	client/pages/news/index.js
	client/pages/news/[id].js
	client/pages/_app.js
	client/services/auth.js
	component/comments.js
	component/loading.js
	component/layout/layout.js
	component/layout/navbar/ticker.js
	component/layout/account.js
	component/coin/graph.js
	component/analysis/tweet.js
	components/analysis/search.js
	components/analysis/ohcl.js

	TESTING
	CLIENT APPLICATION TESTING
	SERVER CODE TESTING
	RSA Testing
	Miller_Rabin Function Testing
	Sentiment Analysis Model Testing
	JSON Web Token
	Base64

	API TESTING
	Evidence
	XSS and SQL Injection Testing

	EVALUATION
	OBJECTIVE COMPLETION
	FEEDBACK FROM CLIENT
	POSSIBLE EXTENSIONS

