Cryptica Social Media Analysis
Application

NEA Document

Arthur Robertson

Centre Number: Redacted
Candidate Number: Redacted

Cryptica Social Media Analysis Application

NEA

Contents

ANALYSIS

DESCRIPTIONOFPROJECT o oo e e
BACKGROUND ANALYSIS o e
INTERVIEWWITHCLIENT o oo s e

CURRENT SYSTEM

PROPOSED SYSTEM o o e e e

OBJECTIVES . . .

OBJECTIVES COMPLEXITY AND LIMITATIONS oo oo

Security . .

APl DataResolution.
Neural Networks o o e

UserinterfaceDesign e

News Article Scraping e

AUTHENTICATION

HTTP Basic Authentication
HTTP Digest Authentication
Session Based Authentication oo o oL,
Token Based Authentication

OAuth . . .
Conclusion

USERIDENTIFICATION o e e e e e
TECHNICALSOLUTIONS o e e e

Twint . . .

Argon2 . .
PostgreSQL
TailwindCSS

DESIGN
OVERALL DESIGN

....................................

....................................

o o o O

10
12
13
16
16
16
16
17
17
17
17
18
19
19
20
20
21
21
21
22
23
24
24
24
25
25

25
25

Arthur Robertson

Cryptica Social Media Analysis Application NEA

FRONTEND PAGES e e e e e e e e e e e 26
APIROUTES e e e e e e e e e e e e e 28
INPUT PROCESS STORAGEOUTPUTCHARTo oo it 31
FORMSTRUCTURE e e e e e e e e 33
LoginForm e 33
RegistrationForm L 33
DATADICTIONARY o e e e e e e e e e e e e e e 33
ENTITY RELATIONSHIPDIAGRAM o s e e e e e e e 37
SQLQUERIES PLAN e e e e e 38
CLASS DIAGRAMS e e e e 40
USERINTERFACE o e e e e e e e e e e e e e e 45
COMMON SECURITY VULNERABILITIESAND MITIGATION 48
SQLInjection e e e e 49
CrossSiteScripting L 49
BrokenAccessControl 50
SECURITYMEASURES e e e e e e e e 50
JSONWeb Tokensand RSA i 50
0 52
AuthenticationWalls L 53
APl ServerSecurity e e e e e 54
TestingPhase e 54
Additional Possible Measures o . 55
BACKUPS e e e e e 56
SENTIMENT ANALYSIS e e e e e e 57
Algorithm e 58
Dataset e e 58
Training e e e e e e 59
Exporting 59
SERVERHARDWARE e 59
ClientFrontend e 59
APIServerandDatabase 60
ALGORITHMDESIGN o e e e e e e e e e e 60
SentimentAnalysis e 60
Authentication L e 62
RSA (Rivest-Shamir-Adleman) Key Generator 64

Arthur Robertson 3

Cryptica Social Media Analysis Application

NEA

Base64
TESTPLAN

IMPLEMENTATION
TABLEOFFILES
ADVANCED TECHNIQUES . . .
ANNOTATED PROGRAM FILES

api/main.py
api/api/auth.py
api/api/crypto.py
api/api/news.py
api/api/twitter.py
api/api/users.py
api/core/auth.py
api/core/binance.py . .
api/core/security.py . .
api/db/crud.py
api/db/schemas.py . . .
api/utils/base64.py . . .
api/utils/sentiment.py .
server/rsa/keygen.py . .
server/news/update.py .
server/sentiment/train.py

.............................

.............................

.............................

.............................

client/pages/account/index.js oo

client/pages/tweet-analysis/index.js
client/pages/coin/index.js Lo

client/page/coin/[id].js .

.............................

client/page/account-analysis/index.js

client/pages/login/index.j

S e

client/page/register/index.js o .
client/pages/news/index.js L o

client/pages/news/[id].js
client/pages/_app.js . .
client/services/auth.js .
component/comments.js

............................

69
72

73
73
78
79
79
81
84
85
87
89
91
93
94
98
107
108
110
111
113
115
118
121
129
132
138
143
147
152
156
160
160
163

Arthur Robertson

Cryptica Social Media Analysis Application

NEA

component/loading.js

component/layout/layout.js

component/layout/navbar/ticker.js Lo oo L.
component/layout/account.js L. L Lo o
component/coin/graph.js L

component/analysis/tweet.js oo oo oL

components/analysis/search.js
components/analysis/ohcl.js oo Lo o

TESTING

CLIENTAPPLICATIONTESTING o oo

SERVER CODE TESTING
RSA Testing . . .

Miller_Rabin FunctionTesting

Sentiment AnalysisModel Testing

JSON Web Token
Base64
APITESTING
Evidence

.................................

XSSand SQL InjectionTesting

EVALUATION

OBJECTIVECOMPLETION o o o e s e e
FEEDBACKFROMCLIENT oo s

POSSIBLE EXTENSIONS

164
165
166
168
169
171
176
178

181
181
187
190
191
193
194
196
197
207
226

Arthur Robertson

Cryptica Social Media Analysis Application NEA

ANALYSIS

DESCRIPTION OF PROJECT

For my project | decided that | want to build a modern secure web application that follows
good security practices. | have decided to find a client to develop an application for that will
allow me to develop an authentication system alongside their desired functionality. | have
some experience in searching for website vulnerabilities, which | will be putting to use when
creating and testing my application.

BACKGROUND ANALYSIS

My client is an IT professional who works for a company maintaining their IT systems. My
client keeps his finances in order, and puts part of his salary into a variety of investments, such
as stocks and shares. My client has a small portion of his investments in Cryptocurrencies,
however he would like to expand on his investments and increase it’s stake.

Cryptocurrencies are a new asset class that has seen a dramatic rise in popularity over the
past year. They are attractive to retail investors as they typically offer high returns with high
risk. The cryptocurrency markets consist of hundreds of coins, that each perform differently
and have different values and purposes. They tend to be extremely volatile, seeing huge gains
and losses in very short periods of time. The market also tends to be influenced by politics
and real life events, and are surrounded by controversy.

Arthur Robertson 6

Cryptica Social Media Analysis Application NEA

BTC / GBP + CRYPTOCURRENCY

Bitcoin to Pound sterling

36’86824 14,978.01% +36,142.21 5Y

Dec 13,12:03:00 PM UTC - Coinbase - Disclaimer

1D 5D ™ 6M YTD 1Y 5Y MAX

50,000
40,000
30,000
20,000

10,000

2017 2018 2019 2020 2021

Figure 1: Bitcoin’s price over the last 5 years. Source: Google Finance

My client is a retail investor, and he primarily bases his investment decisions based on his
own research. His research primarily consists of analysing news articles, and social media
sentiment. My client has noticed that high profile celebrities such as Donald Trump and Elon
Musk can have a large impact on the price of assets based on a short social media post. In
fact, Elon Musk has previously got in trouble in the past with the SEC for tweeting regarding
Tesla’s stock. Cryptocurrencies however are a very unregulated market, and Elon Musk has
tweeted about them several times with no consequences.

Arthur Robertson 7

Cryptica Social Media Analysis Application NEA

Tweet
$0-55 P Time of Tweet
$0.54 U % Elon Musk & Y
" U i* * @elonmusk
0.53 ¢
On *#? Uﬂ?unb &;ﬂt++hp Do you want Tesla to accept Doge?
$0.52 U q
H nnul Yes 78.2%
$0.51
g No 21.8%
=
& s05 3,922,516 votes - Final results
$0.4 u 9:13 AM - May 11, 2021 (0]
QO 3801k O 957K T, Sharethis ...

$0.48

$0.47 T Mg pnr i

i ﬂ g#l.-J!‘ﬂ‘-qn i i
TnTﬁq Tyl

$0.46

07:40 07:50 08:00 08:10 08:20 08:30 08:40 08:50
May 11, 2021

Time

Figure 2: Graph | generated in Python showing the effect of a Tweet on the price of Dogecoin,
a cryptocurrency. The blue candlestick on the financial chart shows the time of tweet.

My client wishes for a web application to be able to analyse the effect certain social media
posts have on the price of cryptocurrencies, with a program that generates graph such as the
one above to show the impact.

With my other clients investments, he keeps informed on current events and news by read-
ing newspapers such as the Financial Times, which offer a range of high quality articles on
most things affecting the stock market. Cryptocurrencies however do not typically feature
frequently in publications like the Financial Times, meaning that my client has to look else-
where for news related to cryptocurrencies. He would also like to be able to see a collection of
Cryptocurrency related news articles in one place, saving him from searching across multiple
publications.

INTERVIEW WITH CLIENT

Me: What functionality are you looking for with this project?

Client: | would like an application that allows me to perform my analysis all in one spot.
Currently, my analysis on social media on the cryptocurrency markets is not good, and is

Arthur Robertson 8

Cryptica Social Media Analysis Application NEA

not helping me make informed trades. | would like a tool that allows me to gain a quick
overview on social media opinion on cryptocurrencies.

Me: What do you normally trade on the cryptocurrency markets?

Client: | normally trade a variety of assets, including Bitcoin, Ethereum, and some other
smaller “alt coins” such as Dogecoin.. | trade on a platform called ‘Binance’.

Me: How do you base your decisions on what to trade?

Client: | make my trades based on overall sentiment on certain assets. | like to keep an
eye out for what assets high profile celebrities are mentioning. | often find that they can
have great influence on the price of some cryptocurrencies. | normally search on Twitter
for certain users and try and find and analyse how the price of certain things change after
they tweet. | like to read articles from news publications as well, especially articles on
cryptocurrency though they rarely appear.

Me: Are there any problems with your current trading method?

Client: Yes. Often, by the time | find about certain coins and see them on social media,
they have already spiked in price and it is too late for me to invest in them. I also don’t
always know who | should pay attention to on twitter, certain users such as Elon Musk
tend to be very influential with the markets, but | need a way to verify this. There is a
very high quantity of spam on Twitter, and | need to be careful who | pay attention to and
who lignore. In addition as | mentioned before, | like to get my news from news sites
and papers. However, | can never seem to find articles about cryptocurrency which is
annoying.

Me: What tools are you looking for to help you make informed trading decisions?

Client: | would like a tool where | can analyse a user’s tweets, and check for mentions
of cryptocurrencies. | would then like to be able to analyse and work out if said user’s
tweets have any influence on the price - this will help me make an informed decision as
to whether to follow the Twitter user’s advice on coins.

| also currently struggle to find relevant news articles related to cryptocurrency. | would
like to be able to access articles from multiple sources in one place, so | can view them at

Arthur Robertson 9

Cryptica Social Media Analysis Application NEA

a glance and assess overall sentiment.

Me: What platform do you normally trade on?

Client: | normally trade and perform all my analysis on my desktop computer. | wish
for the application to be accessible through a website interface, so | can access it from
wherever | am.

Me: What is important to you when visiting a website?

Client: For me, speed and performance is very important. If a website takes too long to
load, I will normally not bother waiting and just close it. The website you make should be
as fast as possible to load and also responsive.

Me: Are there any other features you might like?

Client: | also have many friends in the field. | would like the web application to support
multiple users signup up and creating accounts. | would then like to be able to comment
on articles that feature on the website, and also view other users comments. This will
allow me and my friends to communicate and speculate together.

| would also like to be able to view some basic information about the top coins from the
website, such as the price and how they are performing.

CURRENT SYSTEM

After my interview with my client, | made a flowchart of how he currently uses Twitter and
news publications to research cryptocurrencies to invest in.

Arthur Robertson 10

Cryptica Social Media Analysis Application NEA
I Start) (Start)
L J ¥
Wisit an unvisited
Open Twitter * news publication
website
Is there a mention of any No

Scroll down and view

Tweets

F Y

cryptocurrency?

Does Tweet contain mention of a

Read Tweet content
and try and determine
it's sentiment

.

Observe the time of
the tweet being
posted

.

Open a website that
has a chart of the
mentioned
cryptocurrencies price

.

Check the price at the

time of the tweet, and

lobserve how the price

has changed after the
tweet.

.

Compare this to the
lsentiment of the tweet

Figure 3: Flowchart of my clients process

to try and determine if
the tweet had an
impact on the price

cryptocurrencies in the website's
homepage?

Read the articles

mentioning
cryptocurrencies

Arthur Robertson

11

Cryptica Social Media Analysis Application NEA

As you can see, it is rather inefficient and involves him manually going through many tweets
and articles, sometimes with no results. My proposed system should aim to resolve this
inefficiency, and should save him a lot of time.

PROPOSED SYSTEM

Following the interview with my client, | created a proposal to send to him that aimed to
satisfy his requests. You can see the proposal below:

Cryptica Social Media Analysis Application Proposal

| am proposing a tool called Cryptica to help you meet your analysis needs. Cryptica will be a
website application that consists of several main parts.

The main part of the application will be 2 separate analysis pages. These will both consist of
an input field for you to input any user’s twitter handle. Upon entering a user’s handle, one of
the pages will display a list of their tweets mentioning Cryptocurrency. Then, you will be able
to click on any of the tweets which will bring up further analysis, as well as a graph showing
the impact the tweet has on the cryptocurrency market. It will also display the predicted
sentiment of the tweet - whether or not the content of the tweet is positive or negative. You
will be able to use this to make an informed decision on whether a user has influence in the
cryptocurrency space, and whether to follow what they are saying or not.

The second analysis pages will be for general analysis of a Twitter user. After entering a user’s
handle, you will be able to view a collection of graph and metrics about the user. This will
include metrics such as what time they are typically active on Twitter, as well as what device
they typically use Twitter on. This will allow you to gain an insight into their tweeting habits,
further aiding your analysis.

Cryptica will have support for account authentication - you and your friends will be able to
create accounts and stay logged in between sessions, meaning you can have direct control
over who can use your tool. To use either of the analysis pages, you will be required to login.
This login system means you can have fine access control over who can use your tool.

Next, the news section. Cryptica will store excerpts of news articles from many high profile
news sources, and will allow you to easily view headlines relevant to the cryptocurrency
market from many sources in one place. There will be a main news page that displays a title
and preview of all the news articles in the database. You will be able to click on any of them

Arthur Robertson 12

Cryptica Social Media Analysis Application NEA

and it will take you to a page dedicated to the article. On this page, you will be able to view
the full details about the article, and click through to visit the original article. You will also be
able to post a comment using your account on the article, and view other user’s comments.

Finally, | will include a page that displays a summary of the cryptocurrency markets and the
top coins. You will be able to see a list of the top coins by market cap, and click on any of them
to view a graph of their price. This will let you view at a quick glance how certain coins are
performing, as well as some key metrics with the coin.

This will be implemented using a client application that interacts and works with an APl server.
This can be hosted on a number of free hosting services at no cost or difficulty to you.

Please get back to me and let me know what you think, and if you would like any changes. -
Arthur

| also attached a copy of the following flowchart, highlighting how my application will work:

Start

Visit Application with
Web browser

l

Login / Register on - -
Authentication Page Users
Database

Analysis
Page Enter Users Twitter View List of Tweels 5! Click on Tweet to
Handle from User view further details

Sentiment
Analysis
Model

Backend
APl News
atabase

i View List of
Add comment to Click on Article to
aticle [view further details cryptocurmency news

articles

View List of top 50

Binance cryptocurrencies Binance
Users API API
Database l

Click on Cain to view
further details

Figure 4: Flowchart showing how the user will interact with the program

My client responded approving the proposal, and requested no changes.

OBJECTIVES

1. There should be a publicly accessible web application that allows the client to access
the etc

Arthur Robertson 13

Cryptica Social Media Analysis Application NEA

2. There should be two main components to the web application, a front end client and a
back end API. The front end client should interact with the APl and should be what the
user interacts with. The APl should handle all the fetching/processing of data, as well as
any other functionality such as database management with CRUD.

3. The API should be capable of securely authentication users for the front end app. My
client has specified that he would like anyone to be able to login and register for an
account, so that he can share the application with his like-minded friends. Therefore,
the API should be capable of handling multiple concurrent users having accounts, and
should be able to authenticate and distinguish between them.

4. The APl should interact with the front end client application to ensure that users remain
authenticated between sessions. Users should be able to login and then have to not
enter their password again for a reasonable amount of time. This should be done
using JSON Web Tokens. These should be created and signed by the API server using
cryptography, and stored in the browser storage.

5. The RSA algorithm should be used to sign the JSON Web Tokens. To do this, | will need
to have an RSA key. Part of the program should be able to create RSA keys for use in this
functionality.

6. Theusersdataand passwords should securely be stored in a database. A secure, modern
password hashing algorithm should be used, that uses hash salting to protect against
attacks.

7. The API should be capable of fetching and processing a specified users tweets from
Twitter’s API. It should be able to perform sentiment analysis on the tweet’s content,
and return the information to the user.

8. The APl should have a database table that stores a collection of recent relevant news
articles. The frontend client should then be able to display these articles for easy access.
The news articles should ideally come from a variety of sources through web scraping.
Only a brief excerpt of the article needs to be stored and displayed - to read the full
article the users should be directed to the original site. Alternatively, the news articles
should be fetched from an existing third party API that offers a service.

9. There should be a page that displays a list of the top 50 coins by market cap. It should
display live data showing the price and other statistics about the coins. You should be
able to click on any of the coins and it should take you to another page, showing further
information about the coins performance. This should include a graph of the coins
performance over time, and a brief description of the coin. In addition, on the specific
coin page it should show a list of relevant articles stored in the database relating to the

Arthur Robertson 14

Cryptica Social Media Analysis Application NEA

10.

11.

12.

13.

14.

15.

16.

coin. If no such articles are found, it should not display any.

Logged in users should be able to comment on any of the news articles, and anyone
should be able to view said comments. Admin accounts should be able to delete any
users comments, and users should be able to delete their own comments. The API
should be able to distinguish between users and administrators.

There should be a basic profile functionality. Users should be able to view a users profile,
and view information such as all their historic comments on articles.

The application should be secure against malicious parties. It should not be vulnerable
to common flaws such as SQL or XSS (cross site scripting) injection, and users should
not be able to bypass authentication methods implemented, e.g. viewing pages that
are behind an authentication wall.

The application should contain analysis page for users tweets, that allows someone to
input a users Twitter username. Then, they should be able to view a list of tweets, and
should be able to see information on how the tweet has impacted the cryptocurrency
market. It should display a candlestick graph that displays the price of the relevant
cryptocurrency before and after the tweet. This page should also show the predicted
sentiment of the tweet - whether the tweets content is positive or negative.

The analysis page should also offer some basic analysis on the user’s Twitter account as
a whole. It should be able to produce a heat map of the time the user is typically active
on Twitter, based on the time the user has tweeted previously. It should also display
what device the user uses in the form of a pie chart, for example if the user is tweeting
from an iPhone or from a computer.

The tweets analysis page should be able to perform some basic sentiment analysis on
the user’s tweets contents. It should attempt to estimate whether a tweet is positive or
negative, and this should then be displayed to the user. For this, a neural network should
be implemented using a Python deep learning library such as TensorFlow. The neural
network should aim to have an accuracy of around 75%+. This objective is ambitious
and primarily an extension that | should complete if | have enough time. Failing that, it
should use an existing third party API for analysing sentiment, rather than creating my
own sentiment model.

The website should be fast to respond. This can be measured using Google’s Lighthouse
page score metrics, which is a service that returns a value on how fast the page performs.
| want to aim for a score of 90-100, which is considered ‘excellent’.

Arthur Robertson 15

Cryptica Social Media Analysis Application NEA

OBJECTIVES COMPLEXITY AND LIMITATIONS

My objectives are of high complexity, and will require learning and working with many dif-
ferent elements. It will require me to use several different APIs, including Twitter’s APl and a
Cryptocurrency price API.

Security

Security is a big part and focus of my project. | will attempt to ensure my program is secure
against all likely attacks. Thisis very difficult however, as the field of cyber security is constantly
changing and evolving. This means that there are constantly new attack methods being
developed, making it near impossible to claim an application is “100% secure”. Instead, | will
just attempt to make my program as secure as feasible given my limited time and expertise.

APl Data Resolution

As part of my project | will be processing data from several third party APIs, including Twitter’s
APl and a Cryptocurrency API. These APIs normally impose restrictions on the quality of data
freely available. | will be limited by what data | can freely access.

With my project | will be required to process very high quantities of data frequently. It will be
important that my code is efficient and does not have any bottlenecks. This will add a high
level of complexity.

Neural Networks

Neural Networks are a complicated topic heavy on maths. As part of my project | will attempt
to understand and implement several complex machine learning algorithms. As mentioned
before | aim to produce a sentiment analysis model capable of classifying sentiment with an
accuracy of above 75%. However, neural networks are a new field to me so | must accept that
this might not be possible with my limited time. If | fail to produce a working model, | will
instead resort to using a third party API to perform sentiment analysis, which should achieve
the same end result.

Arthur Robertson 16

Cryptica Social Media Analysis Application NEA

User Interface Design

Whilst the User Interface is important, creating one with CSS is difficult and time consuming.
| shall instead be focusing the majority of my time with building functionality to my appli-
cation. | shall also be using a CSS utility library called Tailwind, which shall help speed up
development.

News Article Scraping

Despite a lot of websites looking visually similar, they are all composed of very different HTML.
This poses a challenge when attempting to scrape websites for news articles, as it is hard to
make a program that is capable of scraping articles from a large variety of sources. For this
reason | will likely be using an external News APl instead of scraping. | will likely be limited by
what APl is freely available.

AUTHENTICATION

Authentication will be a large part of my project. Authentication is the process of verifying an
identity, and ensuring that a user interacting with my system is who they claim to be. Once a
user has authenticated with my server initially, | need a way to keep them logged in and verify
that the user is who they claim to be, without them having to enter their password each time.
| have researched several of the most popular authentication methods and compared their
pros and cons to help me decide on which authentication method to implement. You can see
my research and comparisons below.

HTTP Basic Authentication

HTTP Basic Authentication is the simplest form of authentication that is built into the
HTTP protocol. It involves sending a header containing login credentials with each request
made to a website. The header will look like the following: Authorization: Basic
dXN1lcm5hbWU6cGFzc3dvemQ=. dXNlcm5hbWU6cGFzc3dvemQ= is username:password
base64 encoded to form a string that can be sent with HTTP requests. The receiving server
will then compare the username and password value sent in the request with a value in a
database.

Arthur Robertson 17

Cryptica Social Media Analysis Application NEA

This authentication method is stateless, so the username and password must be supplied
with each request to the server.

Pros

Stateless

Easy to implement

Requires little computing power, fast

Supported by most browsers

Cons

« Credentials are sent unencrypted to the server, therefore HTTPS essential
+ Hard to log users out / invalidate credentials

+ Credentials must be sent with every request

+ Requires storing passwords in plaintext

HTTP Digest Authentication

HTTP Digest Authentication is a variant of HTTP Basic Authentication that addresses the lack
of encryption when sending the password. Instead of sending the base64 encoded password
in cleartext, it is hashed before being sent to the server. This means that if it is encrypted, it is
much harder to extract the original password.

Pros

« Same as HTTP Basic Authentication
+ Passwords sent encrypted

Cons

+ Credentials must be sent with every request
+ Hard to log users out / invalidate credentials
+ Password hashing algorithm must be ran on the client and server, limiting options

Arthur Robertson 18

Cryptica Social Media Analysis Application NEA

Session Based Authentication

With session based authentication, the user’s authentication state is stored on the server
typically in some form of database. Rather than requiring the user to supply a username and
password with each request, after logging in once the server creates a session object. This
can be then stored in a database, and a session ID can be sent back to the client to store in the
browser. This session ID is then sent with all future requests, and is then verified by the server
upon receiving a request.

Pros

+ Only requires sending credentials once

« Widely supported with most popular web frameworks

+ Allows invalidation of sessions - can remove session from database and force user to
log out

Cons

« Stateful - requires implementing a session database. The server needs to keep track of
all sessions generated, which requires additional computing power

« If a user’s session ID is intercepted and stolen, an attacker could perform malicious acts
on behalf of the user

Token Based Authentication

Token based authentication has some similarities with session based authentication, but
differs in the use of a stateful database. With token based authentication, upon valid creden-
tials being supplied to the server, the server generates and signs a token. This token is then
stored by the client and sent with subsequent requests. Then, the server can simply verify the
tokens signature to determine if it is valid. This means the server does not need to keep track
of tokens generated.

Pros

« Stateless - the server does not need to keep track of tokens generated
» Low overhead, with little computing power needed

Arthur Robertson 19

Cryptica Social Media Analysis Application NEA

+ Rising popularity over recent years, with many companies adopting their use. Lots of
documentation online
+ Tokens are compact and typically small in size

Cons

« Difficult to invalidate tokens, tokens are only invalid when they expire
« Token stored in cookies/browser storage, which can sometimes be exploited by attackers

OAuth

OAuth/OAuth2/OpenlD are a form of single sign-on (SSO) that allows users to authenticate
using an existing account from applications such as Google, Facebook and Apple. They allow
you to create accounts and login to new websites using your existing account on another
service. This means there is no need to create or store new passwords, and the other service
handles all credential storage. OAuth is very popular, and many millions of people useiton a
daily basis. You will typically see an option when creating an account to “Login with Google”
or another service.

Pros

+ Improved Security

+ No need to store usernames / passwords

+ Easy experience for the user and fast

+ Uses external applications existing authentication infrastructure

Cons

+ The application is dependent on external services
+ Requires the user to have an account on a configured service
« Difficult to implement, involves working with many different services

Conclusion

After my research, | have decided to implemented a form of Token Based Authentication with
my application, specifically JSON Web Tokens. | have researched JSON Web Tokens further,

Arthur Robertson 20

Cryptica Social Media Analysis Application NEA

and you can read further about them in the design section of this document.

USER IDENTIFICATION

My client has specified that he would like other users to be able to access and use the appli-
cation alongside him. He however is the main user and will have admin privileges over the
system, allowing him to moderate and maintain the application.

The secondary users will be other likeminded retail investors who use social media analysis to
inform their cryptocurrency trading decisions. The typical user is tech savvy, and familiar with
web applications like this. That being said, the program will need a intuitive user interface to
allow new users to navigate through the application and use the tools. Ideally the application
should function as a hub for social media cryptocurrency analysis. There will be a social
aspect as well, with users able to create accounts and comment on news articles.

This creates its own set of problems, with moderation required. My client as mentioned before
will have admin privileges allowing him to manage comments and users. In addition there
will be a basic comment filter in place, that attempts to filter out inappropriate comments
from being published.

There will be a guide on the homepage that will inform users how to use the application. This
will be an easy way to help users understand how the program works, and what it does.

TECHNICAL SOLUTIONS
Next.js

Next.js is what I am going to be using to build my frontend application. Next.js is a JavaScript
framework built upon React for developing web applications. React is one of the most widely
adopted frameworks. According to Statista, React is used by over 40% of website developers
worldwide. Next.js is also incredibly popular, with it being downloaded over 2.3 million times
each week (source NPM). Next.js is a full stack framework, and is capable of handling both the
front and backend of an application. | will primarily be using it for the front end, but it is useful
having the option of using it for any backend functionality if needed. Next.js is incredibly
flexible, and has an excellent developer experience. The majority of a Next.js application
consists of components. Components are basic functions that return JSX. JSX is a special

Arthur Robertson 21

Cryptica Social Media Analysis Application NEA

syntax that looks like HTML, but can also contain JavaScript code. Components are then
rendered on the page by either the client or the server, and turned into HTML. Next.js is
incredibly fast, and can render components before hand on the server. This helps result in
a seamless user experience with no loading times. In addition, rendering components on
the server beforehand is excellent for Search Engine Optimisation (SEO), which is important
when considering page rankings on search engines such as Google. Next.js also has a huge
developer community, which provides excellent documentation, guides, and third party
module extensions.

FastAPI

For my backend API, | chose to use a Python powered server. This is because | am experienced
with using Python for data handling and processing, which will be a large part of my APl server.
Python is also very suited towards machine learning and artificial intellegence which will
feature in my project. Python has a variety of web server modules available, however for my
project | am choosing to use a Python module called FastAPI. My primary reason for choosing
FastAPl is it’s performance. It is a lot faster than other Python alternatives, such as Flask and
Django, as seen in the table below.

Responses per second at 20 queries per request, undefined (24 tests)

Rnk Framework Performance (higher is better) Errors Cls Lng Plt FE Aos DB Dos Orm I|A
1 mgoji 14,797 | I 100.0% (25.1%) M _go mon mon lin My ln raw rea
2 m falcore 14,569 | IS e 5 98.5% (24.7%) M go non non I.i_n My lin raw rea
3 m P gin 14,444 | I 97.6.% (24.5%) Mr go non non lin My lin raw rea
4 M fastapi 12,774 | T 3 6.3 % (21.7%) Mcr Py non non lin Pg lin raw rea

starlette 5 1% (21.6%) Pt Py non non Gn Pg Un raw rea
6 M sanic 12,688 | N 85.7% (21.5%) Mcr [Py non non lin non lin raw rea
7 m® express 11,067 | 174.8% (18.8%) Mcr JS non non lin Pg lin ful rea
8 W martini 10,970 | I 74.1% (18.6%) Mcr go nmon nmon lin Py lin raw rea
9 m® express 10,529 | 71.2% (17.9%) Ml FUST iyshl inon’ MU NPOH RUNT RRIEN Kreal

10 Mflask-raw 6,542 [N 44.2% (11.1%) Mcr Py mei non lin My lin raw rea
11 M flask-raw 4,961 | T 33.5% (8.4%) Mer Py tor non ln My Uln raw rea
12 WD express 4,463 | B 30.2% (7.6%) Mo JS non non ln My ln ful rea
13 m® express 3,941 | 126.6% (6.7%) Mer S mis nom lin My ln ful rea
14 W hapi 2,536 | 17.1% (4.3%) M U5 non non lin Pg ln ful rea
15 M pyramid 2,448 | 16.5% (4.2%) ful. Py non mei lin Pg lin ful rea
16 W pyramid 2,426 | 16.4% (4.1%) ful Py non mei ln Pg lin ful rea
17 W hapi 2,356 | 15.9% (4.0%) Mer Js non non lin My lin ful rea
18 W hapi-nginx 2,190 | 14.8% (3.7%) Mcr JS non non lin Pg lin ful rea
19 W flask 1,773 | 12.0% (3.0%) Mer Py mei non lin My lin ful rea
20 m® django 1,643 | 11.1% (2.8%) ful Py non mei ln Pg ln ful rea
21 Mbottle 1,614 | 10.9% (2.7%) Mer Py tor non lin My lin ful rea
22 Mm@ django 1,543 W 10.4% (26%) ful Py non mei ln My ln ful rea
23 W bottle — Did not complete _il mei non h_n My u_nl rea
24 mbottle-raw — Did not complete — Mer Py mei non lin My lin raw rea

Figure 5: Source: https://christophergs.com/python/2021/06/16/python-flask-fastapi/

FastAPl is also lightweight, and unlike some of the other libraries does not come with lots of

Arthur Robertson 22

https://christophergs.com/python/2021/06/16/python-flask-fastapi/

Cryptica Social Media Analysis Application NEA

features I do not need. This will all help to keep my application fast, and performance high.
FastAPI also has very similar syntax to Flask, another Python module that | have experience
with. This should help ensure an easy development experience.

TensorFlow and Neural Networks

TensorFlow is a Python Library that can be used to create Deep Learning models, created by
Google. TensorFlow has extensive documentation, and many abstraction layers, meaning it
is friendly for beginners to develop with. | plan on using TensorFlow to create a sentiment
analysis classifier, to use on tweets to calculate how positive or negative the content is. Ten-
sorFlow offers many several corpuses which will be suited for my project, including a library
of 50,000 IMDB reviews categorised by rating. This will allow me to use the reviews to train a
model to identify positive and negative text, which will be applied to my API.

Neural Networks are a type of machine learning algorithm loosely modelled on the human
brain. They allow us to identify and classify data and patterns based on raw input. They
consist of nodes, with typically an input layer, then one or more hidden layers, followed by
an output layer. Each node connects to other nodes, and has a specified weight, bias and
threshold. If the output of a node is above the threshold, the node is activated and data is
sent to the next layer. Neural networks improve their accuracy over time by using training
data to learn and fine tune their parameters. Once trained to a suitable level, they are able to
consistently classify data at a quick rate.

X \ Output

Figure 6: Diagram of a very basic neural network, from IBM’s website.

Arthur Robertson 23

Cryptica Social Media Analysis Application NEA

| have also decided that my project will be using a Recurrent Neural Network model. Recurrent
neural networks are a type of neural network that uses sequential data. They utilise training
data to learn, but unlike a typical neural network they have “memory”, as they can take
information from prior inputs to change the input and output. This means that the output is
influenced by the order of the inputs

Twint

Twint is a Python library for fetching data from Twitter without using it’s API. Twitter has
it’s own API that you can register for an account for, however it imposes strict limitations
that made it unsuited towards my project. Twitter’s APl does not allow you to fetch over a
certain amount of tweets, and has harsh rate limitations preventing you from accessing too
many tweets in a short period of time. My project relies on fetching a large quantity of tweets
frequently, so | decided to use Twint instead. Twint is a library that fetches tweets by scraping
from twitters website directly, as if it was a user viewing Twitter with a browser. This allows
for a much quicker access to more data, and for a much better experience. Twint is open
source, however is rather poorly maintained. In my testing, | experienced a variety of bugs
and flaws with the package, stopping me from accessing the data that | required. However, |
have created a fork of the package which I have modified to fix the bugs | encountered, fixing
the package for myself.

Binance API

| am choosing to use Binance’s API to get Cryptocurrency data. According to coinranking.com,
Binance is the most popular Cryptocurrency exchange, with 24 hour trade volumes typically
reaching almost 10 billion dollars. Binance also lists and offers data on a very large number of
markets, at time of writing being 1229. This will allow me to access a very vast quantity of
data. In addition, Binance’s API for accessing data is free and offers generous rate limiting.

Argon2

Argon2 is a modern GPU resistant password hashing algorithm. It offers much better cracking
resistance than other popular password hashing algorithms such as BCrypt, PBKDF2, and
SCrypt. Argon2 is considered one of the best available in the industry, and is recommended

Arthur Robertson 24

Cryptica Social Media Analysis Application NEA

over other algorithms. It was selected as the winner of the Password Hashing Competition
in July 2015, and is released under a Creative Commons License. It also has paramaters that
allow you to configure the execution time, memory required, and degree of parallelism of the
algorithm.

PostgreSQL

When choosing a database, | chose to use PostgreSQL. PostgreSQL is a highly stable database
management system that is over 20 years old. PostgreSQL has many performance optimisa-
tions ensuring it is fast, and is a popular choice in enterprise applications. It is open source,
and has integrations for most popular programming languages, including Python which is
what I am using for my API.

TailwindCSS

TailwindCSS is a CSS Utility Library, which allows the use of utility CSS classes to rapidly build
interfaces. | will be using it to save time when working on the user interface. Instead of needing
to create my own CSS classes, it will allow me to use their pre defined utility classes within
HTML class tags. TailwindCSS also supports custom theming; this will allow me to define a
colour theme which can be changed at any point. This will let me update the colour theme
across the entire site by just changing one variable, instead of updating each HTML class name
manually.

DESIGN

OVERALL DESIGN

The program will consist of two main parts, a client website and an API server. The client
server will interact with the APl server to process and handle data and requests. The APl server
will connect many different APIs and Database Tables to the client. The table below highlights
how the different parts could interact with each other.

Arthur Robertson 25

Cryptica Social Media Analysis Application NEA

Sentiment
Analysis
Model N
ews
Database News AP
Static NextJS .
User Erontend Backend API Binance API

Twitter API

Authentication

External API Database

Figure 7: Diagram showing how the different parts could interact with eachother

FRONTEND PAGES

Below is a table containing a list of planned pages in the client frontend, and a description of
what the function of each one is:

Page URL Slug Purpose

Homepage / This will be the page the user is greeted with upon first
visiting the site. It should contain a brief description of how
the site works and what it does, and should contain a set of
frequently asked questions.

News /news This page should contain a list of news articles stored in the
database. Users should be able to click on any of the articles
which should take them to the articles page.

Arthur Robertson 26

Cryptica Social Media Analysis Application NEA

Page URL Slug

News Article /news/[id]

Coins /coin

Coin /coin/[name]

Login /login

Register [register

Purpose

This page will display the full details stored about an article. It
will also have a comment field, that allows logged in users to
comment and view other comments on the article. This page
should also contain a link to the original article, so the user
can refer to the site the article origins from if desired. Clicking
on a user in the comment section should redirect the user to
their profile page.

This page should display a table containing the top 50
cryptocurrencies ordered by market cap. The table should
contain some details about the coin, such as the price and the
24hour change. It should also display a picture of the coin
symbol. Clicking on any of the coins in the table should take
you to a page dedicated to the coin.

This page should show some details about the specific coin.
This should include a graph of the coin’s price in the past year,
as well as other statistics. Ideally this page should also have a
description of the coin, if available. The page should also
have a sidebar that contains links to any articles relevant to
the coin stored in the database.

This page should contain a form enabling the user to login to
the website. Clicking login should send a request to the API
server which should verify the users password, and then
redirect them to their account page. This page should not be
accessible to logged in users.

The register page should offer users the ability to create an
account. It should contain a form that asks for an email,
name, and password. There should be a password
requirement that ensures the inputted password is secure.
Pressing register should send a request to the API that should
attempt to register and sign in the user. This page should not
be accessible to logged in users.

Arthur Robertson

27

Cryptica Social Media Analysis Application NEA

Page URL Slug
Analysis /analysis
Profile Jusers/[id]
Account /account
API ROUTES

Purpose

This page should contain an input field for the user to enter a
twitter handle. Then pressing submit should send a request
to the API server, which will return a list of tweets that should
be displayed on the page. Then, the user should be able to
click on any of the tweets which should bring up a graph and
some analytics on the tweet, showing the impact it had on
the cryptocurrency market. This page should only be
accessible to logged in users.

This page should act like a publicly accessible profile page. It
should contain a list of comments the user has published on
any of the news articles, and a link to each of them. User
should be logged in to view this page.

The account page should only be accessible to logged in users.
It should display some basic information about the logged in
user, such as their name and email. It should also contain a
button that enables them to logout.

Below is a table containing a list of planned API routes, and a description of what the function

of each oneiis:

Route

/api/hello

/api/users/

HTTP
Meth-

ods Purpose Authentication
GET Testing APl route useful to verify that None

the server is running. Should always

return “Hello World”.
GET Should return a list of users fromthe ~ Admin Only

database

Arthur Robertson

28

Cryptica Social Media Analysis Application

NEA

Route

/api/users/

/api/users/{ID}

/api/users/{ID}

/api/users/{ID}

/api/users/count

/api/users/admin

/api/users/{ID}/profile

/api/auth/login

/api/auth/register

HTTP
Meth-
ods

POST

GET

PUT

DELETE

GET

GET

GET

POST

POST

Purpose

Creates a user from the data supplied
with the POST request

Should return the specified user’s
details

Allows modifying the specified user by
providing new details in the PUT
request

Should delete the user specified from
the database

Should return a count of the number
of users

Should return a list of administrator
users

Should return a list of comments from
the specified user

This is responsible for logging in a user.

Should return a JSON Web Token if the
supplied authentication details are
correct. If the supplied details are
incorrect should return an error

This should be for creating accounts.
This should take the supplied POST
data and attempt to create an account
if one with matching details does not
already exist. It should also return a
JSON Web Token if the account has
been created successfully, if not an
error.

Authentication

Admin Only

Admin Only

Admin Only

Admin Only

Admin Only

Admin Only

Logged in Users

Only

None

None

Arthur Robertson

29

Cryptica Social Media Analysis Application

NEA

Route

/api/auth/me

/api/auth/edit

/api/news

/api/news

/api/news/comments

/api/news/{ID}

/api/news/{ID}/comments

/api/news/{ID}/comments

/api/news/{ID}/comment

s/{COMMENT_ID}

HTTP
Meth-
ods

GET

PUT

GET

POST

GET

GET

GET

POST

PUT

Purpose

This should return a status 200 if the
user is successfully logged in. If not, it
should return an error. This is used to
check if a useris logged in.

This should allow a user to update
their own account by supplying the
PUT request with new data.

This should return a list of the news
articles in the database ordered by
date. It should not return the full
articles, just what is needed for the
news index page.

This should allow the creation of new
articles through POST request data.

This should return a list of all the
comments in the database.

This should return the full details
about a specified news article, used by
the client to display.

This should display a list of comments
on the specified article, ordered by
date.

This should allow the creation of new
comments, by supplying the comment
content in the POST data.

This should allow the user to edit their
comment by supplying new data in
the PUT request. Users should only be
able to modify their own comments.

Authentication

Logged in Users
Only

Own User Only

None

Admin Only

Admin Only

None

None

Logged in Users
Only

Author/Admin
Only

Arthur Robertson

30

Cryptica Social Media Analysis Application

NEA

HTTP
Meth-
Route ods

/api/news/{ID}comments DELETE
/{COMMENT_ID}

/api/news/search POST

/api/twitter/search POST

/api/crypto/{TICKER}/{TIME}GET

Purpose

This should delete the specified
comment on the specified article.
Only the author of the comment or an
admin should be able to delete a
comment.

This should search the database for
news using paramaters supplied in the
POST request, and return any results
as a list.

This should cause the APl to return a
list of tweets for a user specified in the
POST request, from Twitter’s API.

This should return a set of price data
for a specified cryptocurrency at a
specified time. It should return the
datain a listin the OHLC format (Open,
High, Low, Close).

INPUT PROCESS STORAGE OUTPUT CHART

Authentication

Author/Admin
Only

None

Logged in Users
Only

Logged in Users
Only

Arthur Robertson

31

Cryptica Social Media Analysis Application

NEA

Input

Login:
Username,
Password

Register
Account: First
name, Surname,
Email, Password

Create
Comment:
News ID,
Content

Delete
Comment:
Comment ID

Twitter User
Search:
Username

Process

Authenticate
Login
Credentials and
generate signed
JWT

Create new User
Users supplied
password
hashed

Creates
comment Check
content for
potentially
offensive
content

Check comment
creator matches
who initialised
the request, OR
if the user has
admin privileges

Download
username’s
Tweets from the
Twitter API

Storage

Credentials supplied
hashed with same
settings and hash in
database, stored in
temporary variable
Compared against hash
in database RSA Private
Key stored in
environmental variable
for signing JWT

User added to Users
table, with supplied
inputs and hashed
password

Comment added to
Comments Table

Comment deleted from
Comments Table

Store tweets in
temporary array

Output

Depending on success,
either: Signed JWT
containing
authentication data
Error Message

User Successfully
created User creation
Unsuccessful

Comment added
Successfully Comment
added Unsuccessfully

Comment removed
Successfully Comment
removed Unsuccessfully

Return array of tweets
Return error of none

Arthur Robertson

32

Cryptica Social Media Analysis Application NEA

FORM STRUCTURE

As my project is a website based application, the user will interact and supply data to my
program through HTML forms. There can then be a JavaScript function that takes the data
from the forms and makes a request to my API server containing the form data.

Login Form

The login form will consist of an email and password field, with a submit button. The password
field will have the type="password” attribute, which means that the input will remain
hidden when entered, and will display as a « instead. E.g. when 12345678 is entered, it will be
displayed as esessese, This is a security feature implemented in HTML, that means that even if
someone can view your screen when you are entering your password, your password remains
unknown. Upon the submit button being clicked, a JavaScript function will be called. This
function will take the inputs inside the form, and submit a POST request to my API server login
endpoint containing them. From there, my server will process and verify the data, and will
return a status code. My website frontend will then display either a success or error message
depending on the status code returned.

Registration Form

This form will consist of a First Name field, a Surname field, an Email field, a password field,
and a submit button. Again, the password field will have the type="password” attribute.
Upon clicking submit, another JavaScript function will take the form inputs and submit a
POST request to my API Server Register endpoint.

DATA DICTIONARY

My main application will consist of 3 tables, Users, News, and Comments. The users table will
store the details required to authenticate users and provide basic profile functionality. The
news table will store a list of news articles scraped to be displayed on the news article page,
and on the relevant cryptocurrency page. The comments table will store comments by the
users on certain news articles, and will reference both the users and news table. This ensures
that data is not unnecessarily repeated. Each user only features once, and can correspond to
multiple comments. Each news article can have multiple comments associated with it.

Arthur Robertson 33

Cryptica Social Media Analysis Application

NEA

Below you can see a table that has a plan of the different columns that my three tables will

have. The column names are not final, and just serve as a description for now.

Column Table Data Type Description Example Data Validation

ID Users serial Auto generated 1 Required,
primary key for Incremental
user ID.

First Users varchar(255) The first name Arthur Must be below

Name that the user 255 characters,
provides if they A-Z only
wish.

Last Users varchar(255) The last name Robertson Must be below

Name that the user 255 characters,
provides if they A-Z only
wish.

Email Users varchar(255) The email arthur@mail.co Required, must
address of the m be below 255
user. characters

Hashed Users varchar(255) The users Sargon2i$v=19$ Required, must

Pass- password hash, m=16,t=2,p=1$d be below 255

word salted and WRSS205dU84S characters and
generated by the 3BrQVdBUA\Sir5 in argon2 hash
servetr. 0+n9sxd1+qBs3 format

kNaY/A

Admin Users boolean A boolean that true Default is false.
states whether a Only required if
user is an Admin true.
which grants
certain
privileges.

Arthur Robertson 34

mailto:arthur@mail.com
mailto:arthur@mail.com

Cryptica Social Media Analysis Application

NEA

Column Table

ID News

PublicatiorNews

Author

News

Title News

DescriptioNews

URL News
Image News
URL

Data Type

serial

varchar(255)

varchar(255)

varchar(511)

varchar(1023)

varchar(1023)

varchar(1023)

Description

Auto generated
primary key for
the news ID.

The publication/-
source of the
news article.

The author of
the article, if
supplied.

The title of the
news article.

A summary of
the news article,
if supplied.

Alink to the
original news
article.

Alink to the
feature image of
the news article,
if supplied.

Example Data

378

The Verge

Mitchell Clark

US banking
regulators are
looking to clarify
crypto rulesin
2022

Three US
agencies have
issued a joint
statement
saying...

https://www.th
everge.com...

https://cdn.vox-
cdn.com/...

Validation

Required,
Incremental

Required, must
be below 255
characters

Must be below
255 characters

Required, must
be below 511
characters

Must be below
1023 characters

Required, must
be below 1203
characters and a
valid URL.

Must be below
1203 characters
and a valid URL.

Arthur Robertson

35

https://www.theverge.com...
https://www.theverge.com...
https://cdn.vox-cdn.com/...
https://cdn.vox-cdn.com/...

Cryptica Social Media Analysis Application

NEA

Column Table Data Type Description

The date of the
article’s

Date News varchar(255)
publicationin
UNIX timestamp

format.

varchar(1023) Up to the first
1200 characters

of the article.

Content News

ID Commentsserial Auto generated
primary key for

comment ID.

UserID Commentsint Foreign key,
references a user
in the USERS

table.

NewsID Commentsint Foreign key,
references a
news articlein

the NEWS table.

The date of the
comments

Date Commentsvarchar(255)
creation in UNIX
timestamp
format.

Example Data

1640950072

One of them is
already working
to make
banks...

51

=

378

1640950072

Validation

Required, must
be below 255
characters and
in UNIX
timestamp
format.

Required, must
be below 1203
characters.

Required,
Incremental

Required, must
be avalid
USER_ID

Required, must
be a valid
NEWS_ID

Required, must
be below 255
characters and
in UNIX
timestamp
format.

Arthur Robertson

36

Cryptica Social Media Analysis Application

NEA

Column Table Data Type Description Example Data

Content Commentsvarchar(2000) The content of Oh no!
the comment
that the user has
inputted.

ENTITY RELATIONSHIP DIAGRAM

Validation

Required, must
be below 2000
characters.
Disallowed
characters
should be
stripped.

A comment belongs to one news article and one user. An article and a user can both have

many comments.

Arthur Robertson

37

Cryptica Social Media Analysis Application

NEA

@ (O

<& public &

users_tbl
user_id integer +

ﬁ user_first_name character v ﬁ
arying(255)

ﬁ user_last_name character v ﬁ
arying(255)

Ij user_email character varyin ﬁ
g(255)

Ij user_hashed_password cha ﬁ
racter varying(255)

[user_admin boolean A

® B
<> public B
comments_tbl

comment_id integer

/P comment_user_id integer >'—

public
news_thl

news_id integer

news_publication character
varying(255)

news_author character varyi
ng(255)

news_title character varying(
511)

news_description character
varying(1023)

news_url character varying(
1023)

news_imageurl character va
rying(1023)

news_date character varying
(255)

news_content character vary
ing(1023)

4@ comment_news_id integer

Ij comment_content character
varying(2000)

ﬁ comment_date character var
ying(255)

Figure 8: Entity Relationship Diagram for my tables

SQL QUERIES PLAN

This table shows a few examples of SQL queries | will be using. The dollar symbol followed
by a number represents a variable. My project is using PostgreSQL, which is very similar to

Arthur Robertson

38

Cryptica Social Media Analysis Application NEA

MYSQL but offers some more features and better performance as mentioned previously. $n

represents variable n.

Description

Select all entries from the specified
table

Count entries in the specified table

Create a User in the Users table

Delete item from specified table
when variable matches

Update User by ID

Create Users Table

Create News Table

Create Comments Table

Drop Table

SQL Query

SELECT * FROM $1;

SELECT COUNT(*) FROM $1,;

INSERT INTO users_tbl (user_first_name,
user_last_name, user_email, user_hashed_password,
user_admin) VALUES ($1, $2, $3, $4, $5);

DELETE FROM $1 WHERE $2 = $3;

UPDATE users_tbl SET user_first_name = $1,
user_last_name =$2,user_email =$3,
user_hashed_password = $4, user_admin = $5 WHERE
user_id =$6

CREATE TABLE IF NOT EXISTS users_tbl (user_id serial
PRIMARY KEY, user_first_name varchar(255),
user_last_name varchar(255), user_email
varchar(255), user_hashed_password varchar(255),
user_admin boolean);

CREATE TABLE IF NOT EXISTS news_tbl (news_id serial
PRIMARY KEY, news_publication varchar(255),
news_author varchar(255), news_title varchar(511),
description varchar(1023), news_url varchar(1023),
news_imageUrl varchar(1023), news_date
varchar(255), news_content varchar(1023))

CREATE TABLE IF NOT EXISTS comments_tbl
(comment_id serial PRIMARY KEY, comment_user_id
int, comment_news_id int, comment_content
varchar(2000), comment_date varchar(255))

DROP TABLE $1;

Arthur Robertson

39

Cryptica Social Media Analysis Application NEA

Description

Get all News ordered by Date

Get news with keyword and limit

Search item by column

Get Comments and User info from
News ID ordered by Date

Insert an item into the news table

Create a comment in the comments
table

Get News and associated
Comments by News ID

CLASS DIAGRAMS

SQL Query

SELECT news_id, news_title, news_publication,
news_imageurl, news_description, news_date FROM
news_tbl ORDER BY news_date DESC

SELECT news_title, news_imageurl, news_publication,
news_id, news_date FROM news_tbl WHERE
UPPER(news_title) LIKE $1 OR
UPPER(news_description) LIKE $1 OR
UPPER(news_content) LIKE $1 ORDER BY news_date
DESC LIMIT $2

SELECT * FROM $1 WHERE $2 = $3;

SELECT comment_id, comment_user_id,
comment_content, comment_date, user_first_name,
user_last_name FROM comments INNER JOIN users
ON comments.comment_user_id = users.user_id
WHERE news_id = $1 ORDER BY date DESC

Insert into News: INSERT INTO news_tbl
(news_publication, news_author, news_title,
news_description, news_content, url, news_imageurl,
news_date) VALUES ($1, $2, $3, $4, $5, $6, $7, $8)

INSERT INTO comments_tbl (comment_user_id,
comment_news_id, comment_content, date) VALUES

(81, $2, 33, $4)

SELECT * FROM news_tbl INNER JOIN comments_tbl
ON news_id = comments_news_id WHERE news_id =
$1 ORDER BY comment_date DESC

Below is a draft of some of the planned classes that | will be using in my program. | will

be making use of Object Orientated techniques such as encapsulation and abstraction to

Arthur Robertson

40

Cryptica Social Media Analysis Application

NEA

efficiently represent complex structures.

Session

con : NoneType
connection_pool
db

url : tuple

close()
connect()
execute(query)

T

Table

table name

count()

drop_table()

get_all()

get by column(column, id)

|

News

Users

Comments

create_comment({comment)
create_table comments()
delete_comment(id)
edit_comment(id, comment)
get_comments()
get_comments_by_id(id)
get_comments_by news_id(news_id)

create_news(news)

create_table news()
delete_news(id)

edit_news(id, news)

gel_news()
get_news_and_comments()

get news_and comments by news_id(news_id)
get_news_by_author(author)
get_news_by_id(id)
get_news_by_phrase(phrase, limit)
get_news_by_title(title)

Figure 9: Class Diagram for the Database related classes

count_users()

create table users()
create_user(user)

delete_user(id)

edit_profile(id, user)

edit_user(id, user)

get_admins()

get_profile(user id, me)
get_user(id)

get_user by email(email)

get_user by first name(first_name)
get_user by last name(last name)
get_users(limit)

Thisisa UML diagram of the Database related classes. The Session class is used to manage the

connection to the database, and access it at a low level. The Table class inherits the Session

class, and counts some generic functions, such as a function to get a count of the number of

rows in that table. The Comments, News, and Users class then inherits from the Table class,

and passes the table name to the Table class. These classes contain more special purpose

functions for interacting with the specific tables, however they can still access the general

functions when needed from the Table class.

Arthur Robertson

41

Cryptica Social Media Analysis Application NEA

Encoding

add zeros(binary)

T

Base64

table : str

decode(text)
encode(text)

Figure 10: Class Diagram for the Encoding related classes

The above is the class for encoding Base64 into and from Decimal. It inherits from the class
Encoding. This class exists in case | have a need to add any further encoding methods. Generic
functions that typically feature in encoding such as recurisvely adding zeros (add_zeros) can
feature here.

This UML diagram below contains the classes that will feature in the security section of my
application. AccessToken is the class that will be used to create JSON Web Tokens, and Argon2
is the class that will be used to hash and verify passwords.

Arthur Robertson 42

Cryptica Social Media Analysis Application

NEA

AccessToken

algorithm : str
data : NoneType
expires : int
header : str

token : NoneType
type : str

Argon2

create_access_token()
decode token()

get data()

get token()

verify token()

hash password(password)

verify password(password, password hash)

Figure 11: Class Diagram for the Security related classes

User

email

first name
last_name
password

user_id : NoneType

username
to_dict()

T

Admin

is_admin : bool

Figure 12: Class Diagram for the User model

This is a draft of how the User’s can be represented with classes. The User class will have most

of the methods and apply to most people using the site, and the Admin class will have all the

same functionality with some added uses for Admins only.

Arthur Robertson

43

Cryptica Social Media Analysis Application

NEA

Comments

Author

name

url
delete_comment(co

to_dict() get_comments()

add_comment(comment)

mment)

to_dict()

News

author
content
date
description
image url
publication
title

url

to_dict()

Figure 13: Class Diagram for the News Article related classes

Publication

name
url

to_dict()

Here the News class inherits from the Author, Comments, and Publication class. | propose that
the comments Class has a data structure that allows comments to be removed and added.

Cookie

HTTPRequest

delete cookie()
get cookie()
set_cookie()

deleter()
fetcher()
poster()
putter()

\

/

Auth

login()
logout()
verify Aut

getToken()

h()

Figure 14: Class Diagram for the Front End Authe

ntication

Arthur Robertson

44

Cryptica Social Media Analysis Application NEA

This diagram shows a class that will be used in the frontend to handle authentication. The
Auth class will make use of methods in Cookie and HTTPRequest to send requests to the
API server to generate JWT tokens, and then save the returned token as a cookie. It will also
handles authenticated requests made to the server. Cookies need to be sent with requests
that are made to the server so the server can verify the user’s identity, so the Auth class will
make use of both it’s inherited classes to do this.

USER INTERFACE

When creating a mockup of how the user interface should look, two things were particularly
important. Functionality, and accessibility. It was crucial that the user interface should be
easy to use and efficient - not bogged down with unnecassary bloat like many large websites
these days. Below is a wireframe of the header that will feature on all pages. The high contrast
colours make it accessible, but still functional and aesthetically pleasing. The bar showing
the cryptocurrencies and their respective prices should ideally scroll, enabling approximately
10 coins to be shown on loop. There should also ideally be an “account” / “sign in” button,
perhaps where the “Search” button currently is. This can change depending on the user’s
login state.

[B]B] € Signin Home News Sport Weather iPlayer Sounds cBBC More - Search Q

Home Coronavirus Climate UK World Business Politics Tech Science Health Family & Education Entertainment & Arts ~ Stories In Pictures More ~

England N.lreland Scotland ~ Alba Wales Cymru Local News

Record 103 new Premier
League Covid cases
(@sh BBC Sport

No new Covid
rules in England
before new year -
Javid

The health secretary's comments

come as England reported a record
113,628 cases on Christmas Day.

Extra vaccine requirements
come into force in NYC

(©8h US & Canada

Scotland's Covid cases hit
record levels over Christmas Taliban ban long road trips
for solo women

New figures show more than 11,000
cases were recorded in Scotlandon @y 4n Asia
26 December.

O3m WK

o What are the current rules?

Swimmers criticise
@®3h Scotland Christmas Day sewage
release

B Remain cautious, urges Javid

@énh Oxford

Biologist EO Wilson -
'Darwin’s heir' - dies at 92

(@6n Science & Environment

Wy oy
S

el iF

= R - Policeman "shocked" to see
Shoppers shun Christmas Urgent action needed on US west coast battered by Confusion and empty bars crash car driven on M25

sales as footfall drops energy prices - Ovo boss heavy snowstorms under new rules in Wales ©7h Kent

New data reveals a 32% decline in Ovo predicts an "enormous crisis” in Almast 30in (76cm) of snow fall in New restrictions are affecting the

footfall compared with 2019, with 2022 as the business secretary meets parts of northern California and hospitality sector on what should be Missing search and rescue
central London badly affected. with the energy indusiry. Nevada over 24 hours. one of its busiest times. dog found alive by drone

@7h Business ©6h Business @2h US & Canada ©6h Wales ©4h Norfolk

Coronavirus See All

- IEEPREEIE R 4

Figure 15: The inspiration for the design, BBC News

Arthur Robertson 45

Cryptica Social Media Analysis Application NEA

LOGO News Analysis Tweets About m

Bitcoin Ethereum $3,213.31 +4.31% Dogecoin $0.25421 +1.01% All Coins >

Figure 16: A mockup of how the header and a general page could look.

For the analysis page, there are 3 main parts. The input field for the user to search for some-
one’s twitter handle, the tweet box that displays a list of the inputted user’s tweets, and finally
the analysis section that displays the price change, as well as the sentiment of the selected
tweet. | put together a basic mockup of what this could look like.

Arthur Robertson 46

Cryptica Social Media Analysis Application NEA

LOGO News Analysis Tweets About

Bitcoin Ethereum $3,213.31 +4.31% Dogecoin $0.25421 +1.01% All Coins >

USERNAME: COIN:

BITCOIN TWEETS

| think bitcoin is really cool! - @elonmusk
Tesla now accepting Bitcoin - @elonmusk
| am the Dogefather - @elonmusk

Bitcoin miners using too much energy.
In talks with them to fix. - @elonmusk

Tesla no longer accepting BTC - @elonmusk

Tweet

I think bitcoin is really cool! - @elonmusk
Tweet sentiment: +1.0
Price impact: 5%

Figure 17: Analysis Page Mockup

Finally, | made a mockup of what the news page could look like. This page should be a
scrollable list of all the articles sorted by most recently added. At the top there could potentially
be a full width ‘Featured’ article, which could either be specifically chosen or the most recent
article. Clicking on any of the articles should take you to the page for the article.

Arthur Robertson 47

Cryptica Social Media Analysis Application NEA

LOGO News Analysis Tweets About m

Bitcoin Ethereum $3,213.31 +4.31% Dogecoin $0.25421 +1.01% All Coins >

N eWS Bloomberg

Title of the Relevent News
Article Would Go Here

Author Name 7th June 2021

Short summary of the article can go here, or relevent quote from
article. This will be to hook people to reading.

Bloomberg

Title of the Relevent News
Article Would Go Here

Author Name 7th June 2021

Short summary of the article can go here, or relevent quote from
article. This will be to hook people to reading.

Bloomberg

Title of the Relevent News
Article Would Go Here

Author Name 7th June 2021

Short summary of the article can go here, or relevent quote from
article. This will be to hook people to reading.

Figure 18: News Page Mockup

One thing to note with the mockups is that the design is one of the least important parts of this
project. | will aim to complete all the functionality first, and then will work on the appearance
after.

COMMON SECURITY VULNERABILITIES AND MITIGATION

| need to ensure that my application is secure against common security vulnerabilities, and |
will need to take proper steps to ensure that my application is secure against the common ones.
Below | have researched some of the common security vulnerabilities that | will be ensuring
my program is robust about, and | have mentioned some common mitigation techniques
against said vulnerabilities.

Arthur Robertson 48

Cryptica Social Media Analysis Application NEA

SQL Injection

SQL Injection is one of the most common web vulnerabilities, that involves submitting a
malicious payload to the website that ends up being executed by the SQL server.

The following is an example of a function that would be vulnerable to SQL injection.

def fetch_users_password(username):
SQL_QUERY = "SELECT password FROM users_table WHERE username
='" + username + "';"
return execute_sql(SQL_QUERY)

If a hacker was to enter ' OR 1=1 into the following function, the SQL query would return
a list of all the users password, rather than the specified user. This is because 1=1 always
evaluates to True, and the OR statement means that the WHERE clause is true for all entries in
the database, resulting in all entries being returned.

Mitigation To ensure my application is secure against SQL Injection attacks, | will be using
prepared SQL statements. Prepared statements are a feature commonly provided in SQL
libraries, that allows the user to provide parameters to an SQL query, rather than having to
include the parameter values in the statement itself.

For example, the following statement does not use prepared statements: SELECT * FROM
users WHERE name = 'arthur'; Thiscould be remade using prepared SQL statements to
look like the following: SELECT * FROM users WHERE name = $1; Then,inthisexample
the value arthur could be supplied as a parameter. This prevents SQL injection attacks such
asthe fetch_users_password example above.

Cross Site Scripting

Cross-Site Scripting (XSS) is similar to SQL Injection, however typically involves malicious
JavaScript code being injected into a webpage rather than SQL queries being abused. It
typically happens as a result of an application not filtering and sanitising user input. For
example, in a comment text field, | should not be able to insert HTML tags into the page.

Mitigation When handling user input, | will perform server side sanitation and validation
to ensure that the user’s input is not malicious. | will limit allowed characters, and perform

Arthur Robertson 49

Cryptica Social Media Analysis Application NEA

regex validation against text to ensure that there is no way an attack can inject code into a
page. In addition, | will HTML encode any comments that are being displayed onto my site.
HTML encoding turns characters such as < (which is used to open a HTML tag) into other
symbols that do not impact the page. For example, the string <script> would be turned into
<script>. When viewed on the page however, it will appear as the original string.

Broken Access Control

Broken Access Control vulnerabilities are when there is a lack of authorisation check when
attempting to access privileged resources / areas of a website. For example, as a user of a bank
| should be able to access my bank account balance, but not someone else’s. According to
OWASP.org, Broken Access Control is one of the most common website vulnerability seen.

Mitigation To mitigate against this sort of vulnerability, | will be creating functions to limit
access to specific pages and API routes. When creating a new page or API route, | will consider
who the intended user is, and carefully manage who can access. In addition when testing, |
will ensure that no user can access resources that | know they shouldn’t be able to.

SECURITY MEASURES

Below | have detailed the functionality behind some of the security measures | will be imple-
menting. | have also discussed some possible extensions.

JSON Web Tokens and RSA

As mentioned in the analysis section, | will be using JSON Web Tokens as a method for au-
thenticating and verifying my users identity.

JSON Web Tokens are an open standard (RFC 7519) for implementing a secure way to transmit
information between two parties (in my case the client and server) as a JSON object. This
information can be verified by making use of digital signatures. In my case, | will be signing my
JWTs using an RSA private key that | will generate. JWTs can be signed by a variety of different
algorithms, including ECDSA, and RSA. | chose to use an Asymmetric Key algorithm to sign my
JSON Web Tokens, as | am familiar with the core concepts behind them. This left me with 2
main options, ECDSA or RSA. | made the following comparison table to help me choose:

Arthur Robertson 50

https://tools.ietf.org/html/rfc7519

Cryptica Social Media Analysis Application

NEA

Type

Complexity

Key Length

Standardised Date

Widespread Use

Core Concept

ECDSA

Asymmetric Public/Private
Key

High Complexity

Much shorter keys required
to provide the same security

2005
Less adopted than RSA

Works on the mathematical
representation of Elliptical
Curves

RSA
Asymmetric Public/Private
Key

Simpler than ECDSA to
implement

Typically uses 2048-bit or
4096-bit keys

1995

Most widely used
asymmetric algorithm

Works on the principle of the
Prime Factorisation problem

RSA |ended up on choosing RSA. | have done some work with RSA before, so | am already

familiar with how it mathematically works. In addition, it is still one of the most popular
choices for encryption algorithms and has been used for over 25 years, proving it has stood
the test of time.

RSA works on the prime factorisation problem. This put simply is the fact that two very large
prime numbers multiplied together produce a semiprime number. It is easy mathematically
to multiply the primes to form the semiprime, but it is incredibly difficult and computationally
hard to factorise the semi prime back into its original two prime numbers. RSA works in the
following way:

Generating Keys

You select two large prime numbers, p and g.

Calculate their product. n = p x ¢

Calculate the totient function. ¢(n) = (p — 1)(¢ — 1)

Selectavalue of e. e should be coprimeto ¢(n) and 1 < e < ¢(n). Numbers are coprime

ol A S

if 1 is the only positive integer that divides them. In practice 65537 is very commonly
used as ¢, because it is a Fermat prime and is of suitable size for security.

Arthur Robertson 51

Cryptica Social Media Analysis Application NEA

5. The Public Key is the pair of numbers n, e. This can be shared to any party.

6. The Private Key (d) is calculated from the numbers p, ¢, and e. The numbers are related
with the Extended Euclidian Algorithm, which proves that e x d = 1 mod ¢(n). d can be
found from this.

7. The Private Key is the pair of numbers n, d. This should be kept secret and is what will
be used to encrypt messages.

Encryption The followingis an equation to encrypt using the previously found values for
the public key. P represents the plaintext, and C represent the cipher-text.

C = P°modn

Decryption Decrypting follows a very similar process, though this time it uses the private
key.

P =C%modn

You can find some pseudocode and further information on RSA further down this document.

JWT

| chose to use JSON Web Tokens alongside RSA. JSON Web Tokens are composed of 3 parts
separated by dots, which are the Header, Payload, and Signature. A typical JWT looks like
the following:

XXXXX . YYYVYY.222Z2Z

Header The header containsinformation about the token, including the algorithm, and the
type. In my case, | am using RS256. This means | am using RSA, with SHA256 as the hashing
algorithm. My header will look like this:

{
"alg": "RS256",

”typll 9 IIJWT”
}

This JSON is then encoded using Base64, to produce a string that looks like the following:

eyJhbGci0iJSUzI1INiIsINR5cCI6IkpXVCI9

Arthur Robertson 52

Cryptica Social Media Analysis Application NEA

Payload The payload contains the data that we want to transfer and verify between two
parties. This payload is then Base64 encoded, to produce another string. In my case, the
payload will likely contain the user’s email, their permissions, and the expiry time. The expiry
time denotes how long the token should be considered valid for. Choosing an expiry time is a
trade off between convenience and security - lower expiry means higher security, but requires
the user to authenticate more often.

Signature Finally, thereis the signature. The signature is the most important part, and is
what ensures that we can trust the data in the payload is genuine and not modified. As | am
using RSA, the signature can also be used by the client to verify that the JWT has originated
from me using my public key.

The signature is made by first combining the header and payload with a “’ in between. Then,
the RSA algorithm is applied to the result, using the hidden Private Key. This result is then
hashed using SHA256.

Combining the header, payload, and signature with a ‘’ separating them produces our final
token, which can be sent to the client after they’ve authenticated. This will then be stored in
their cookies, and sent with all future requests to the server.

Verifying JWTs It isimportant that the JWTs are verified before the payload’s contents are
trusted. RSA and SHA256 produce the same outputs each time when the same inputs are
supplied. Therefore, to verify that the signature is correct, we can use the Base64 encoded
payload and header to recreate the signature with our Private Key. We can then compare our
newly created signature with the signature provided by the client. If they match, then we have
verified that the JWT is correct and was created by us, and we can trust it. And if they do not
match, then we can assume the JWT has been tampered with and is untrustworthy.

Authentication Walls

My users will have to login to access key functionality. My login page will send the login form
datato my API, where it will be checked to ensure that it’svalid. In the event that it is, my server
will return a signed JSON web token to the user, which will be stored in the browser’s cookies
with a short expiry. All subsequent requests to my API server will contain an authorisation
header with the token, which ensures that my server can verify who any requests came from
and that they are authorised.

Arthur Robertson 53

Cryptica Social Media Analysis Application NEA

Not all of my application and requests will be behind a login screen however. | will create a
function that allows certain routes to be protected, and others not.

API Server Security

| will be storing password hashes in my PostgresQL database, rather than plaintext. | will be
using the Argon2 hash function as previously described, which has excellent resistance to GPU
cracking and is suitable for storing passwords. When verifying passwords are correct, | can
make use of the verify function to compare a plaintext password with the hashed password
from the database. | will also be salting the passwords, which mitigates against hash table
attacks in the event of a data breach. These measures will help ensure my user’s information
remains secure. Salting is a practice involving adding a unique random string of characters
known only to the site to each password before it is hashed. This salt value is typically stored
in plaintext by the site, and is recalled when verifying a hash to ensure a password is correct.
Salts are a safeguarding method that ensures that even if two users have the same password,
the hash produced will be different. This can drastically slow down malicious hackers in
the event of the password database being leaked. My chosen password algorithm Argon2
automatically handles the generation and use of salts.

In addition, | will implement a password security requirement when signing up to ensure that
users use a secure password. The password requirements | will be enforcing are the following:
1. At least eight characters 2. At least one number 3. At least one uppercase letter 4. At least
one special character To implement this, | will be using a regex rule to match passwords that
meet the requirements. | will be using the following pattern: A (?=.x[A-Z]) (?=.%[a-z])
(?=.%x[0-9]) (?2=.*%[\W]).{8,}5 Thiscomplex pattern | developed checks against all my
defined requirements.

Testing Phase

In my testing phase, | will also be checking that my application is secure against common
website exploits, such as SQL and XSS injection which I have mentioned in the analysis section.
These sort of injection attacks involve sending maliciously crafted payloads in fields that accept
user input, such as login forms. Attackers hope that these payloads cause code to be executed
on the website server, which if successful would allow a malicious party to gain complete
access to the server. It is essential that no application is vulnerable to such attack. My testing
plan will detail how I will attempt to verify that my application is secure.

Arthur Robertson 54

Cryptica Social Media Analysis Application NEA

Additional Possible Measures

There are many additional security measures that | could implement to further improve my
applications security. It is unlikely that within the time period of this project | will be able to
implement any of the following, however they all act as possible extensions for the future.

Rate Limiting |P Based Rate limiting would mean that if a user makes too many requests
from one IP address in a short period of time, they would be temporarily blocked and pre-
vented from making further requests. This is an important feature that stops attackers from
brute forcing things such as password login attempts. Rate Limiting aims to only stop bots
and automated programs from making too many requests too fast - it should never affect a
user using the application typically. Ideally given time, this should be implemented either
using a library or a custom program.

CAPTCHA and Anti-Robot buttons CAPTCHA stands for the Completely Automated Public
Turing test to tell Computers and Humans Apart. They are designed to be able to distinguish
between real humans and robots, by providing pop up challenges to complete when clicked.
They are commonly used in login or registration forms to ensure that the person accessing the
application is real. CAPTCHA’s are very effective at stopping robots and automatic program
from using an application. This can stop attacks such as a site being flooded with spam.
CAPTCHA’s can be implemented using services such as Google’s reCAPTCHA. They are very
important with any public application.

™

I'm not a robot

Figure 19: Screenshot of what a Captcha typically looks like

Multi-Factor Authentication Multi-Factor Authentication (MFA) is an authentication tech-
nique that requires a user to provide multiple verification factors to be able to confirm their

Arthur Robertson 55

Cryptica Social Media Analysis Application NEA

login. One of the most common MFA factors used are one-time passwords. One-time pass-
words are codes typically sent via SMS or email to a user, that needs to be entered to access
the application. This adds an extra layer of protection, as it means that even if an attacker
has your password, they require an extra layer to gain access to your account. Most MFA
techniques are based on one of three things:

Knowledge These are things you know. These include security questions, additional PINs,
or other passwords.

Inherence These include permanent attributes that you as a person have. For example,
voice, fingerprint, iris or other biometric recognition.

Possession Possession includes things that you have access to and control of. For example,
you have access to your smartphone which can receive a one-time password over SMS, or you
have access to your email. You can also get security USB keys, which requires the physical
device present to authenticate.

Most important apps will require you to have some form of Multi-Factor authentication these
days, especially apps that relate to finance.

IP Tracking and Blocking Many secure applications use your IP address and other device
information when you are authenticating as an extra layer of security. They aim to identify
suspicious patterns and halt them. For example, if you consistently log into a website from
the UK, and then suddenly attempt to login from Russia, the login attempt might be flagged
as suspicious and stopped. This is tricky to implement, and often requires the use of machine
learning models to attempt to predict users behavior.

BACKUPS

Frequent backups are important with all online applications. The source code for the program
will be backed up onto GitHub. GitHub is a version control system that acts as a code repository
and tracks changes over time. GitHub is a free cloud service used by millions, meaning that
even if the source code is accidentally deleted from the computer while developing, it is secure
in the cloud and can be easily restored.

Arthur Robertson 56

Cryptica Social Media Analysis Application NEA

When the programis running, the Postgres database will need to be backed up as well. Postgres
offers 3 main approaches to backing up data:

SQL Dump This method involves creating a “dump” of the database. It will generate a text
file of SQL commands that can be run again on the server to recreate the database to the
same state as when the dump was created. PostgreSQL offers a built in way of doing this,
through the pgdump command. Running this command produces a set of SQL commands
that should be saved to a file for later use. Restoring is as simple as pasting the commands
back into the SQL shell. I will setup an automatic system to before this type of backup weekly,
and the backup dumps will be saved to an external server.

File System Level Backups Another method that PostgreSQL offers for backups are File
System Level Backups. These involve directly copying the files PostgreSQL generates to store
the data in a database, and restoring them at a later point when required. This method is
however not as suited as SQL Dumps, as the database server must be shut down in order
to get a backup. In addition, the file size generated by this backup is typically much larger
than an SQL dump. This method also requires advanced knowledge of the UNIX file system -
restoring an SQL dump is a much easier experience for the client.

Continuous Archiving and Point-in-Time Recovery Continuous Archiving and Point-in-
Time Recovery is PostgreSQL’s equivalent to an incremental backup. Incremental backups
are a backup of all changes made since the last backup. With incremental backups, there
is normally one full backup done first. Then, future backups just track changes since then.
This helps save in storage size and normally results in much faster backups. If | was expecting
the database to grow to a large size, | would be using this backup method. However, given
the limited nature of what is being stored | do not expect the database to grow past a few
megabytes in size. This makes SQL dumps more suited, due to the low complexity required to
setup, compared to the advanced setup required with an incremental backup.

SENTIMENT ANALYSIS

The sentiment analysis portion of the project will likely be a technically complex part. As per
my clients request, | will be making a model to analyse tweets and the sentiment of their
content. You can view some details about how | will be doing this below.

Arthur Robertson 57

Cryptica Social Media Analysis Application NEA

Algorithm

| have chosen to use a bidirectional Long Short-Term Memory neural network. LSTMs are a
type of Recurrent Neural Networks capable of processing entire sequences of data. They are
particularly suited to classifying text, which is why | will be using one. This will be implemented
with the use of TensorFlow and Keras, which have built in support.

Dataset

To train my machine learning model | will be using a dataset | have found on the website Kaggle.
Kaggle is a Google owned company that allows users to publish and find data sets for purposes
such as my own. The dataset | have chosen to use is a collection of tweets with their sentiment
already classified. My machine learning model will then use this dataset to learn from and
train itself. The dataset comes from the following link: https://www.kaggle.com/c/tweet-
sentiment-extraction/data

The dataset consists of a CSV file with over 27,000 rows. Each row contains 4 columns, textID,
text, sentiment, and selected_text. textID is a unique ID for each row, text is the
original tweet, sentiment is either neutral, positive, or negative depending on the
content, and selected_text is the part of the text that is responsible for the sentiment.

For example, the following is a sample from the dataset:

textID text sentiment selected_text
997a62f83f These kids are negative These kids are
terrible! If | was in terrible!

Good Evans, I‘d call
Childline

For my purposes, | am just interested in the sentiment and selected_text column, which
will provide enough information to train a model.

This dataset will need preprocessing. Preprocessing is the act of removing unwanted parts
and turning the dataset into something useful to a computer. In my case, this will include
removing punctuation, URLS, emails, and other unwanted characters from the dataset. | will
create a function to do this.

Arthur Robertson 58

https://www.kaggle.com/c/tweet-sentiment-extraction/data
https://www.kaggle.com/c/tweet-sentiment-extraction/data

Cryptica Social Media Analysis Application NEA

Before the dataset can be interpreted, it needs to be Tokenized. Tokenization is the process of
splitting up each text into smaller pieces such as individual words or phrases, called Tokens.
Algorithms typically need text to be tokenised to understand what is going on.

The dataset will also be split into two parts, a training set, and a testing set. The training set
will consist of 75% of the dataset. This will be used to create the model. The other 25% will
consist of a testing set. This will be used after the model is created to test and evaluate it’s
accuracy.

Training

Training a neural network is hardware intensive. For this reason, | will be making use of the
free service Google Collab. Google Collab offers free access to powerful GPUs and lets users
run python programs in the cloud. | expect the program to take several hours to complete
training.

Exporting

Once the model is trained, | will export it as a Pickled object. Pickling is the process of
converting a Python object into a byte stream that can be stored. | will download the Pickled
trained model from Google Collab for use in my API server. Then it will be as simple as
developing a function to unpickle the file, allowing access to the trained model. Then, the API
will have access to all the models functionality, and can be used to detect sentiment.

SERVER HARDWARE

My web application will need several components constantly running to ensure 24/7 uptime.

Client Frontend

| will be running my frontend client application using an online service called Vercel. Vercel is
a service made by the creators of Next.js, the JavaScript library my frontend is using, and is
suited towards hosting Next.js apps. Vercel offers a generous free tier that will allow my app
to be hosted on their network of cloud servers at no cost. | will then be able to create a DNS

Arthur Robertson 59

Cryptica Social Media Analysis Application NEA

record on a domain of my choice to point towards Vercel’s servers, allowing easy access to
the frontend application.

API Server and Database

My API server and Database will use another online free service called Heroku. Heroku is
capable of hosting Python web applications such as the API server, and can also create and
manage databases. Heroku manages maintenance of the server and database, allowing for
an easy development and maintenance experience.

ALGORITHM DESIGN
Sentiment Analysis

| will be using the Python Module Tensorflow to train my sentiment analysis model. Tensorflow
abstracts away from much of the underlying code, however it will still require me to configure
and train a model.

The dataset | am using does not come preprocessed, and contains raw tweets. This means the
text in the dataset contains unwanted features, such as hashtags, URLs, and emojis. These are
not useful to train a sentiment analysis model on, as | am just interested in the text meaning
instead. For this reason, | will need to preprocess my dataset and turn it into a friendly format.
| have described some of the preprocessing algorithms | will need to develop below:

Load_Dataset Function This function will use a built in CSV module to load a dataset from
a .csv file, and return the relevant columns to be stored as a variable.

FUNCTION LOAD_DATASET (Path)
Dataset = LOAD_CSV_FILE(Path)
Dataset = Dataset[['selected_text', 'sentiment']]
RETURN Dataset

ENDFUNCTION

Clean Function This function will take a dataset as its input. It will then perform Regex
matching onto each item in the dataset and remove Regex matches from each item. It will then
return a cleaned list. | have provided a description of what each Regex pattern does below.

Arthur Robertson 60

Cryptica Social Media Analysis Application NEA

This function also makes use of lambda, or “Anonymous” functions. Lambda functions are
suited to single use functions that take use of other functions - in my case a regex substitution
function. Regex . SUB takes three inputs. The first input is a regex rule to match against. The
second input is a string to replace any found matches with. The third and final input is the
string to test the regex against.

IMPORT Regex

FUNCTION CLEAN(Data)
Data = Data.apply(lambda
Data = Data.apply(lambda
Data = Data.apply(lambda
Data = Data.apply(lambda
Data = Data.apply(lambda
Data = Data.apply(lambda
RETURN Data

ENDFUNCTION

Regex.SUB(r'http\S+', '', x))
Regex.SUB(r'#\S+', '', x))
Regex.SUB(r'@\S+', '', x))
Regex.SUB(r'[M\w\s]', "', x))
Regex.SUB(r'\s+', ' ', x))
Regex.SUb(r”\"', uu, X))

X X X X X X

Expression Description

Shttp\S+ Matchesall URLs

#\S+ Matches all #Hashtags

@\S+ Matches all @Mentions

[AM\w\s] Matches all non alphanumerical characters
\s+ Matches multiple sequential spaces

' Matches single quotation marks

Create_Sequences Function | will be using an external Python module to create a tokenizer
to apply to my dataset.

IMPORT Tokenizer

FUNCTION CREATE_SEQUENCES(Data)

Tokenizer = Tokenizer ()

Tokenizer .FIT_ON_TEXTS(Data)

RETURN Tokenizer.Texts_To_Sequences(Data)
ENDFUNCTION

Arthur Robertson 61

Cryptica Social Media Analysis Application NEA

Once | have my dataset preprocessed, training is fairly straightforward. You can see below
some Pseudocode showing what my training file might look like.

IMPORT Tensorflow

Dataset = SHUFFLE(Dataset)

TRAINX = Dataset['selected_test'][:int(len(Dataset)*0.8)]

TESTX = Dataset['selected_test'][int(len(Dataset)*0.8):]

TRAINY = Dataset['sentiment'][:int(len(Dataset)*0.8)]

TESTY = Dataset['sentiment'][int(len(Dataset)*0.8):]

Model = LSTM()

Model.ADD(Layers.Embedding (MAX_WORDS=5000, INPUT_LENGTH=200))

Model.ADD(Layers.Bidirectional(Layers.LSTM(20, DROPOUT=0.6)))

Model.ADD(Layers.Dense(3, ACTIVATION='softmax'))

Model.COMPILE (OPTIMIZER="'rmsprop', LOSS='
categorical_crossentropy', METRICS=['accuracy'])

Model.FIT(TRAINX, TRAINY, EPOCHS=100)

OUTPUT (Model.EVALUATE(TESTX, TESTY))

TEXT_TO_TEST = INPUT('Enter a text to test: ')
OUTPUT (Model.Predict (TEXT_TO_TEST))

Authentication

| have made a flowchart demonstrating how authentication will be handled.

Arthur Robertson 62

Cryptica Social Media Analysis Application NEA

Navigate to account
page

Send the JWT token to the
client to be stored as a
cookie

User navigates to
login page

User enters email and
password

-

Sign JWT token containing
users email with signing
secret

Signing Secret

POST request is submitted to
authentication API endpoint
containing email and
password entered

Yes, password supplied is
correct

Hash the submitted
password with same salt
as the hash retrieved from
the database

J

Does retrieved hash match newly
generated hash?

Does user exist in
database?

No, password supplied
does not match password
stored

Figure 20: Flowchart of Authentication Flow

The authentication process will make use of several different functions and components of
my project. | have created some Psuedocode for some of the key ones that will be used.

Create_JWT Function The Create_JWT function is a core part of the authentication flow. It
makes use of the base64 functions that are described further down, and also makes use of
the RSA keys created. It takes a payload as an input, which will contain data such as the user’s
email in JSON format.

FUNCTION CREATE_JWT(Payload, Private_Key):

Header = '"{"alg":"RS256","typ":"JWT"}'

Header_Encoded = Base64.ENCODE (header.encode('utf-8')).decode('
ascii').strip('=")

Payload_Encoded = Base64.ENCODE(payload.encode('utf-8')).decode
('ascii').strip('=")

Arthur Robertson 63

Cryptica Social Media Analysis Application NEA

Body = Header_Encoded + '.' + Payload_Encoded

Signature = RSA_SIGN(PRIVATE_KEY, Body, 'sha256')
Signature_Base64 = Base64.ENCODE(Signature).STRIP('="').REPLACE/(

'+', '=').REPLACE('/', '_")
JWT = Body + '.' + Signature_Base64
RETURN JWT
ENDFUNCTION

Verify_JWT Function The Verify_JWT function will be used to check a JWTs authenticity,
by confirming that the signature is correct and signed by the private RSA key. For this, we can
use the corresponding public key to check - a property of asymmetric cryptography.

FUNCTION VERIFY_JWT(JIWT, Public_Key):

Header, Body, Signature = JWT.SPLIT('.")

Signature_Decoded = Base64.DECODE(Signature.REPLACE('-"',"'+").
REPLACE('_','/')+'==")

TRY:
RSA_VERIFY (Public_Key, Signature_Decoded, (Header + '..' +
Body), 'sha256')
RETURN True
EXCEPT Exception: # Signature can't be verified
return False
ENDFUNCTION

RSA (Rivest-Shamir-Adleman) Key Generator

RSA is an encryption algorithm that takes advantage of modular arithmetic principles. As
previously described, | will be requiring some code to generate RSA keys. Below, | have detailed
the different components and shown how they could be made. | have decided to split up the
key generation into several different functions to improve readability.

Miller_Rabin Function The Miller Rabin primality test is an algorithm that attempts to
estimate whether a number is likely to be a prime number. It is one of the simplest yet fastest
tests known to solve this problem. RSA requires large prime numbers to be generated, so |

Arthur Robertson 64

Cryptica Social Media Analysis Application NEA

need a way of telling if a number is prime or not. | will be dealing with numbers up to the size
2xx48, so a lookup table of prime numbers would not be suitable.

The functions time complexity is the following: O(k log® n). k is how many rounds the function
is to be performed. In my case, | have chosen to use 10 rounds. The round number is a trade
of between performance and accuracy.
FUNCTION MILLER_RABIN(NUM)
S =NUM -1
T =0

WHILE S MOD 2 ==

S=5//2
T=T+1
ENDWHILE

FOR X IN RANGE(10) # repeat 10 times, for 10 rounds
A = RANDOM.RANDINT(2, NUM - 1) # generate random number
less than input num
V. = (A **x S) MOD NUM

IF V NOT ==
I =0
WHILE V NOT == NUM - 1
IF I —=
RETURN FALSE
ELSE
I=1I+1
V = (Vx%2) MOD NUM
ENDIF
ENDWHILE
ENDIF
ENDFOR

RETURN TRUE

Arthur Robertson 65

Cryptica Social Media Analysis Application

NEA

Store Prime
number to test
as variable N

Y
Set variable
StoN-1
Set variable
TtoO

Is S Mod 2
equal to 07

No

Set variable
Rto0

Yes. Return True

R=R+1
Set variable A to a random
number between 2 and N - 1
V = (A** S) Mod N

Ye: Is V equal to 1?

Set variable |
to 0

Is V equal
toN-1?

‘ Yes. Return False

No

!

I=1+1
V = (V ** 2) Mod Num

Figure 21: Miller Rabin Function Flowchart

Arthur Robertson

66

Cryptica Social Media Analysis Application NEA

Generate_Prime function This function will repeatedly generate a large number that has
the specified keysize number of bits. It then estimates if the number is a prime number or
not using the RABBIN_MILLER function. If it estimates the number to be prime, it returns the
number. If not, it will repeat the process until it finds a prime.

KEYSIZE = 1024

FUNCTION GENERATE_PRIME(KEYSIZE)
WHILE True
NUM = RANDOM_INT(2%*(KEYSIZE-1),2**KEYSIZE)) # generate
a number of keysize bits

IF MILLER_RABIN(NUM) == True
RETURN NUM # keep on running loop until we generate
a prime
ENDIF
ENDWHILE
ENDFUNCTION

Generate Random
Number between

-
2**(keysize - 1) and
2**keysize
l No

Is the
random
number prime? Use
MILLER_RABIN
function,

Yes

Figure 22: Generate Prime Function Flowchart

Arthur Robertson 67

Cryptica Social Media Analysis Application NEA

Extended_Euclidean_Algorithm Function The Extended Euclidean Algorithm is used dur-
ing key generation to find the modular inverse of the value E with (P - 1)* (Q - 1).Due
to our previously defined functions to create the public and private key, we know that the
value of E is relatively primeto (P - 1)x (Q - 1).This means there exists integers X and
Y suchthat (ExX)+ ((P - 1)%* (Q - 1)x Y)= 1.

FUNCTION EGCD(A, B)

IF A == 0: # in the case that A is 0, we need to return B,
0, 1
RETURN (B, 0, 1)

ELSE

GCD, Y, X = EGCD(B % A, A) # recursively call the
function, with the inputs B mod A, and A
RETURN (GCD, X - (B // A) *x Y, Y) # return a tuple using
some of the output of the EGCD function. // dis
integer division.
ENDIF
ENDFUNCTION

Start EGCD
Function

A = First Integer Input
B = Second Integer Input

l

IsAis

‘ Yes—-/ Return B, 0, 1

equal to 0?

No

v

Set variables GCD, Y, X
to the output of the EGCD
function with B mod A,

and A as the inputs

Return (GCD, (X - (B // A)* Y,)

Figure 23: Euclidean Algorithm Flowchart

Generate_Key This will use the previously defined functions to create the final RSA keys for
use. Each key consists of two number values. The Public key consists of the value for N with

Arthur Robertson 68

Cryptica Social Media Analysis Application NEA

the value E. The Private key consists of N and D. Further up in the document you can view an
explanation of the mathematics behind RSA, and what each of the numbers signify.

P = GENERATE_PRIME(1024)
Q = GENERATE_PRIME(1024)
N =P % Q
E = 65537

G, X, Y = EGCD(E, (P - 1) * (Q - 1))
D=X%(P-1) (Q - 1)

PUBLICKEY = (N, E)
PRIVATEKEY = (N, D)

Base64

Base64 is a binary to text encoding scheme that can represent binary text in ASCII format.
Base64 is typically used to encode data to be sent over a network.

Each Base64 digit represents 6 bits of data. | will be using Base64 as previously explained
when | create my JSON Web Tokens to be sent to the client.

Add_zeros function This will be a recursive function used by both the encoding and decod-
ing function, to add zeros padding to a binary value until the length of the binary is a multiple
of 8. For example inputting 101011 will return 00101011, 10001000 will return 10001000,
and inputting 1 will return 00000001

BINARY = USERINPUT

FUNCTION ADD_ZEROS (BINARY)
IF LEN(BINARY) MOD 8 NOT == O THEN
BINARY = '0' + BINARY
RETURN ADD_ZEROS (BINARY)
ELSE
RETURN BINARY
ENDIF
ENDFUNCTION

Arthur Robertson 69

Cryptica Social Media Analysis Application NEA

Binary value
input

Is the length
of the binary value a
multiple of 87

Prepend a
zero to the
binary value

No—p

Yes
Return the
binary value

Figure 24: Add_Zeros Function Flowchart

Encoding This function will be used to encode text into base64.

1

10

11

12

constant TABLE = '
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
+/' # defines the constant TABLE with all the base64
characters

BINARY = None # define varibale BINARY

TEXT = USERINPUT # defines the text variable, that assigned to
the value of the user's dinput

BASE64 = None # define variable BASE64

FOR LETTER IN TEXT # iterate through each letter in the variable
text
BINARY <- BINARY + ADD_ZEROS(CODE_TO_BINARY (CHAR_TO_CODE/(
LETTER))) # append to binary, the binary representation
of the letter with zeros padded
ENDFOR

WHILE LEN(BINARY) MOD 3 NOT == 0 # while the length of binary -s
not a multiple of 3:
BINARY = BINARY + '0O0000000' # append 8 zeros. these are the
padding characters
ENDWHILE

Arthur Robertson 70

Cryptica Social Media Analysis Application NEA

FOR NUM = 1 TO LEN(BINARY) # -iterate through the length of the

binary
IF NUM MOD 6 == 0 THEN
BINARY = BINARY[:NUM] + ' ' + BINARY[NUM:] # add a space
every 6th digit
ENDIF
ENDFOR
BINARY <- SPLIT(BINARY, ' ') # split the binary into a list at

the spaces

FOR ITEM IN BINARY # 1iterate through the list of binary

IF ITEM == '000000' # if the item 1in the 1list is 6 zeros
BASE64 = BASE64 + '=' # then this is padding, and
represented by an equals sign. add to the base64
string

ELSE # otherwise
BASE64 = BASE64 + TABLE[BINARY_TO_DECIMAL(ITEM)] #
convert the item to decimal, then append the -item in
the table with the index of the decimal item to the
base64 string
ENDIF
ENDFOR

OUTPUT BASE64 # output the final result

Decoding Decoding follows a similar process, but in reverse. The following pseudocode
details how this could be implemented.

constant TABLE = '
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789

+/!
BINARY = None
TEXT = None

BASE64 = USERINPUT

FOR LETTER IN BASE64
IF LETTER == '='
BINARY = BINARY + '000000'
ELSE
BINARY = BINARY + ADD_ZEROS(DECIMAL_TO_BINARY (INDEX (
TABLE, LETTER)))

Arthur Robertson 71

Cryptica Social Media Analysis Application NEA

ENDIF
ENDFOR

WHILE LEN(BINARY) MOD 3 NOT ==
BINARY = BINARY + '00000000'
ENDWHILE

BINARY = SPLIT(BINARY, ' ')

FOR ITEM IN BINARY
IF NOT ITEM == '00000000'
TEXT = TEXT + CODE_TO_CHAR(BINARY_TO_CODE(ITEM))

OUTPUT TEXT

TEST PLAN

To ensure my program is functioning as intended, | will need to carry out tests on all parts of
my program.

| will test the accessibility and usability of my front end website’s GUI. This will include using
Google’s Lighthouse website testing tool. Lighthouse runs a series of audits against the page,
and then generates a report based on how well the page did. It is accessible from Chrome
Dev Tools. The report ends up giving a score between 0 and 100, with a detailed breakdown. |
would like to aim for a score of at least 90.

| will then do some black box testing. This will let me imitate a user, and will let me ensure
that from a user’s point of view, everything functions as intended. | can do this by interacting
with my program and ensuring that it performs as expected without any faults. Here is where
| will be testing that my program performs as expected, and produces correct graphs. | will
create a checklist of functionality to test for. | will be recording a sample of this process and
uploading it as a video.

| will be making use of tools to perform in-depth security testing on my application. Burp
Suite is an integrated platform and graphical tool for performing security testing, which offers
a free community license. | will be making use of this and previous experience to audit and
test my application. Burp Suite offers many different features, the following of which | will be
using:

Arthur Robertson 72

Cryptica Social Media Analysis Application NEA

+ Scanner - This can be used to perform automatic scans of an application and flag any
found vulnerabilities

+ Intercepter - By proxying my network traffic through Burp Suite, | can view, intercept,
and modify HTTP requests sent to my application in real time. This will allow me to test
erroneous data and imitate an attacker.

+ Repeater - Burp Suite automatically logs all requests made to an application, and allows
them to be viewed retrospectively. It also allows these requests to be repeated, but
with modified paramaters. | will use this to test for vulnerabilities such as XSS and SQL
injection. | will ensure that all APl routes are tested using this method, with a range of
data supplied.

Finally, | will verify that several of my algorithms such as RSA function as intended by manually
checking the mathematics and inputs. | will test that encryption and decryption successfully
works using my RSA keys by using the formula | have described in the design phase. This will
allow me to prove that my RSA keys are valid.

| will use the a table similar to the following to record my tests, and | will provide evidence as |
go.

Description Actual Result Expected Result

| have completed a table full of the exact tests | will be carrying out in each component of the
project. To save unnecassarily repeating, you can find the table with evidence in the testing
stage of this document.

IMPLEMENTATION

TABLE OF FILES

My application is split up into three separate parts: Client, APIl, and Server.

Arthur Robertson 73

Cryptica Social Media Analysis Application NEA

The Client is the front end web application that the user interacts with. It will be the only part
that the user will have to access, and provides a nice interface for accessing the applications
functionality.

The APl is another web application, but one that the user will not be required to directly use. It
will be interacted with through HTTP requests, such as POST, GET, PUT, and DELETE. The Client
will make these requests to the APl on behalf of the user, and the APl will return data that will
then be interacted with by the client. The APl will handle functionality such as authentication,
data fetching and processing, and more.

The Server part is a collection of files that typically need to be run only once, or at specific
times. Whilst the APl and Client will need to be constantly running, the Server files will not.
This will include files to do things such as updating the news database, generating RSA keys,
and more.

A reasonable proportion of the files in the Client section of the application consists mainly
of just HTML and CSS. For that reason, part of the Client section will not be annoted, unless
there is any noteworthy algorithms in them.

The table below shows the list of files that my program contains, as well as a short description
of their purpose and a reference to the page that their code is on.

File Path Purpose

api/.env Provide the environmental variables for the
APl section. Used for storing secrets.

api/main.py The main file that launches and creates the
APl server.

api/api/auth.py Provides the API routes to handle users
logging in and registering accounts.

api/api/crypto.py Provides an API route to return
cryptocurrency price data from the Binance
API.

api/api/news.py Provides APl routes to create, read, update,

and delete news articles and comments from
the backend database.

Arthur Robertson 74

Cryptica Social Media Analysis Application

NEA

File Path

api/api/twitter.py

api/api/users.py

api/core/auth.py

api/core/binance.py

api/core/security.py

api/db/crud.py

api/db/schemas.py

api/db/session.py

api/utils/base64.py

client/.env

client/next.config.js

client/package.json

client/component/comments.js
client/component/loading.js

client/component/account/welcome.js

Purpose
Provides an API route to return a collection of
tweets from Twitter’s API for a specified user.

Provides APl routes to query and access user
information. Also provides CRUD routes to
modify users.

Provides functions used by the API routes to
handle authentication.

Contains a class for interacting with
Binance’s API to access cryptocurrency data.

Provides a class and functions for creating
and verifying JSON Web Tokens, used in
authentication.

Provides a set of functions for interacting
with the database using SQL queries.

Contains a set of classes representing the
database models. Used by the FastAPI
python module for interacting with API
routes.

Contains a Session class for connecting to
the database.

Contains a class for encoding and decoding
between base64 and ascii.

Provide the environmental variables for the
Client section. Used for storing secrets.

Configuration file for Next.js
Configuration file for JavaScript
HTML Components

Loading Wheel Component

Welcome Banner Component

Arthur Robertson

75

Cryptica Social Media Analysis Application NEA
File Path Purpose
client/component/admin/heatmap.js Heatmap graph Component
client/component/admin/linechart.js Linechart graph Component
client/component/admin/piechart.js Piechart graph Component
client/component/admin/profile.js Twitter Profile Component
client/component/admin/table.js Table Component
client/component/admin/tableitem.js Table ltem Component
client/component/analysis/input.js Text Input Component
client/component/analysis/ohcl.js Candlestick Chart Component
client/component/analysis/search.js Search Field Component
client/component/analysis/tweet.js Tweet Component
client/component/analysis/user.js Twitter User Component
client/component/coin/graph.js Candlestick Chart Component
client/component/coin/relatednews.js Related News Component
client/component/coin/sidearticle.js Sidebar Article Component
client/component/coin/tableitem.js Table Item Component
client/component/layout/layout.js General Layout Component
client/component/layout/pagination.js Pagination Support Component
client/component/layout/sidebar.js Sidebar Component
client/component/layout/navbar/account.js Navbar Button Component
client/component/layout/navbar/header.js Navbar Header Component
client/component/layout/navbar/navbar.js Navbar Component
client/component/layout/navbar/price.js Navbar Price Subbar Component
client/component/layout/navbar/ticker.js Navbar Ticker Component
client/component/layout/ticker/general.js Navbar Ticker Component
client/component/layout/ticker/index.js Navbar Ticker Component
Arthur Robertson 76

Cryptica Social Media Analysis Application

NEA

File Path

client/component/news/comments.js
client/component/news/content.js
client/component/news/feature.js
client/component/news/post.js

client/services/auth.js

client/pages/account/index.js
client/pages/account-analysis/index.js
client/pages/admin/index.js
client/pages/tweet-analysis/index.js
client/pages/coin/[coin].js
client/pages/coin/index.js
client/pages/login/index.js
client/pages/news/[id].js
client/pages/news/index.js
client/pages/register/index.js
client/pages/users/[id].js
client/pages/_app.js
client/pages/_document.js

client/pages/404.js

client/pages/global.css

server/news/fetch.py

Purpose

Comments Field Component
News Content Component
Feature News Article Component
News Post Component

Authentication Service. A class for checking
the status of a user’s authentication, as well
as performing authorised HTTP requests.

Account Page

Account Analysis Page

Admin Page

Tweet Analysis Page

Specific Coin Page

Coin Leaderboard Index Page
Login Page

News Article Page

News Index Page

Register Page

User Profile Page

Encases all pages in JS component
Adds HTML metadata to all pages

Page displayed when client attempts to visit
page that does not exist (404).

Global CSS applied to every page.

Class that contains methods for fetching data
from the News API, and interacting with the
Database.

Arthur Robertson

7

Cryptica Social Media Analysis Application NEA

File Path Purpose

server/news/db.py Class that contains methods for interacting
with the Postgres Database.

server/twitter/tweets.ipynb Function to demonstrate and test fetching
tweets and performing analysis using
MatPlotLib and Tweepy.

server/rsa/keygen.py Function to generate RSA Private and Public
Key.

server/sentiment/train.py File to train and create the neural network
model

ADVANCED TECHNIQUES

| have provided a table that highlights some of the advanced programming techniques used,
and which file you will find them in.

Technique File(s)

Recursion api/utils/base64.py, server/rsa/keygen.py
Advanced SQL Queries api/db/crud.py, server/news/fetch.py

Complex Mathematical server/rsa/keygen.py
Algorithms
Object Orientated client/services/auth.js, api/core/security.py

Programming Techniques

Hashing and Encryption api/core/security.py

Exception Handling api/core/auth.py, api/core/security.py
Complex Client-Server client/services/auth.js, client/pages/login/index.js,
Model client/pages/tweet-analysis/index.js

Arthur Robertson 78

Cryptica Social Media Analysis Application NEA

Technique File(s)
Parsing External Web client/pages/coin/[coin].js, client/services/auth.js,
Services APls client/pages/account-analysis/index.js

ANNOTATED PROGRAM FILES
api/main.py

Thisfile is responsible for launching the API server, and importing the different elements. It
also connects the server to the database, and makes use of middleware. The middleware
intercepts every request made to the server, and modifies the request object to include the
database class instance. This means that the other files can access the same database class
instance by accessing the request object. | did this for performance - rather than connecting
to the database each time it needs to be queried, | can maintain a consistence connection
that exists for as long as the file is running. This increases performance, and decreases server
load to my database.

third party module imports

from fastapi +import FastAPI, Depends, Request
import uvicorn

from fastapi.middleware.cors import CORSMiddleware

imports for the different endpoints/routes
from api.users {import users_router

from api.auth import auth_router

from api.news import news_router

from api.crypto import crypto_api

from api.twitter import twitter_router

dimports for the database

from db.session import Session

from db.crud import Crud

imports for authentication

from core.auth {import get_user, get_admin

origins = [
"http://localhost:5000",
"http://localhost:8080",

Arthur Robertson 79

Cryptica Social Media Analysis Application NEA

22
23
24
25
26
27
28

29

30

31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

51

"http://localhost:3000",
"https://nea.vercel.app",
"https://cryptica.arthurr.co.uk",
Il*ll

] # defines a list of origins for CORS requests

app = FastAPI(openapi_url=None) # creates the FastAPI app with
no OpenAPI documentation

db = Crud("DATABASE_URL") # creates a database session using the
DATABASE_URL environment variable

app.add_middleware(# adds the CORS middleware to the app. This

allows cross-origin requests to be made from the defined list

of origins

CORSMiddleware,

allow_origins=origins,

allow_methods=["*"], # allows all HTTP methods, e.g. GET,
POST, PUT, DELETE

allow_headers=["x"], # allows all HTTP headers, e.g.
Authorization, Content-Type

)
#

@app.middleware("http") # adds the middleware to the app. This
allows the database session to be passed to the request
object

async def db_session_middleware(request, call_next): # defines
the middleware function

request.state.db = db # adds the database to request.state.
db

response = await call_next(request) # calls the next
middleware function

return response # returns the response from the next
middleware function

@app.on_event("startup") # adds the startup event to the app
async def startup():
await db.connect()
await db.create_table_users() # creates the users table if
it doesn't exist
await db.create_table_news() # creates the news table if 1t
doesn't exist
await db.create_table_comments() # creates the comments
table if it doesn't exist

Arthur Robertson 80

Cryptica Social Media Analysis Application NEA

@app.on_event("shutdown") # adds the shutdown event to the app
async def shutdown():
await db.close() # closes the database connection

@app.get("/api/hello") # defines the endpoint /api/hello
async def root():
return {"message": "Hello World"} # returns Hello Wor'ld.
this is a test endpoint

app.include_router (users_router, prefix="/api/users",
dependencies=[Depends(get_user)]) # includes
the users router in the app. This adds all
the endpoints defined in the users file
to the app. The prefix 1is the path that
the endpoints will be added to. The
dependencies are the dependencies that are
required for the endpoints to be called.
app.include_router (auth_router, prefix="/api/auth") # dincludes
the auth router in the app.
app.include_router (news_router, prefix="/api/news") # 1includes
the news router in the app.
app.include_router (twitter_router, prefix="/api/twitter") #
includes the twitter router in the app.
app.include_router(crypto_api, prefix='"/api/crypto") # includes
the crypto router in the app.

if __name__ == "_main__": # defines the main function that runs
if the file dis run directly
uvicorn.run("main:app", host="0.0.0.0", reload=True, port
=8000) # runs the app on the localhost on port 8000

api/api/auth.py

This file is responsible for the authentication routes of the APl application. This contains a
set of endpoints that allow the user to login, register, and verify their authentication status
through HTTP requests. This file makes use of classes imported from other files, such as the
AccessToken class which is responsible for the generation of JWT tokens.

from os 1import access
from fastapi import APIRouter, Depends, HTTPException, status,
Request

Arthur Robertson 81

Cryptica Social Media Analysis Application

NEA

14

15

16
17
18
19
20
21
22
23
24
25
26
27

28

29

30
31
32

33

34

35
36

from datetime import timedelta

from core import security

from core.auth {import authenticate, sign_up, get_user
from db.schemas 1import UserlLogin, UserCreate, UserEdit
import re

auth_router = router = APIRouter() # creates the auth router

@router.post("/login")
async def login(form_data: UserlLogin, request: Request): #

defines the login endpoint with the form data and the request

object
user = await authenticate(request, form_data.email,

form_data.password) # attempts to authenticates the user

using the form data
if not user: # if the user doesn't exist)
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password",
headers={"WWW-Authenticate": "Bearer"},
) # returns a 401 error

if user['admin']: # if the user object has an admin field

permissions = "admin" # sets the permissions to admin
else: # otherwise
permissions = "user" # sets the permissions to user

access_token = security.AccessToken(# creates an access
token object using the AccessToken class

data={"sub": user['email'], "permissions": permissions})

sets the data to the user's email and permissions

for the access token
return {"access_token": access_token.get_token(), "
token_type'": access_token.type} # returns the access
token and the token type

@router.post("/register")

async def signup(form_data: UserCreate, request: Request): #
defines the signup endpoint with the form data and the
request object
signups_enabled = True # sets the signups_enabled variable

to true. This can be changed to false to disable signups

if not signups_enabled: # if signups are disabled
raise HTTPException(# returns a 403 error
status_code=status.HTTP_403_FORBIDDEN,

Arthur Robertson

82

Cryptica Social Media Analysis Application NEA

37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55
56

57

58

59

60
61
62
63
64
65

66

67

detail="Signups are currently disabled",

)

if not re.match(r'A(?=.x[A-Z]) (?=.x[a-z]) (?2=.%x[0-9]) (?=.x[\W
1).{8,}$', form_data.password): # if the password doesn't
match the regex
raise HTTPException(# returns a 400 error
status_code=status.HTTP_400_BAD_REQUEST,
detail="Invalid Password",
)
if not re.match(r'A[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0
-9-.1+$', form_data.email): # if the email doesn't match
the regex
raise HTTPException(# returns a 400 error
status_code=status.HTTP_400_BAD_REQUEST,
detail="Invalid Email",
)
if len(form_data.first_name) < 3 and len(form_data.last_name
) < 3: # if the first name and last name are less than 3
characters
raise HTTPException(# returns a 400 error
status_code=status.HTTP_400_BAD_REQUEST,
detail="Invalid Name",

user = await sign_up(request, # attempts to sign up the user
using the form data
form_data.email, form_data.password, form_data.
first_name, form_data.last_name) # sets the user
variable to the response of the sign_up function
if not user: # if there is an error with the sign_up
function and it does not return a created user
raise HTTPException(# returns a 400 error as the user
already exists
status_code=status.HTTP_409_CONFLICT,
detail="Account already exists",
headers={"WWW-Authenticate": "Bearer"},
)
else: # otherwise
access_token = security.AccessToken(# creates an
access token object using the AccessToken class
data={"sub": user[0]['email'], "permissions": "user"
}) # sets the data to the user's email and
permissions for the access token
return {"access_token": access_token.get_token(), "

Arthur Robertson 83

Cryptica Social Media Analysis Application NEA

token_type'": access_token.type} # returns the access
token and the token type

@router.get("/me")
async def user_me(current_user=Depends(get_user)): # defines the
/me that returns 200 if the user is authenticated
if current_user['admin']: # if the current user 1is an admin
return {'status': 200, 'admin': 'true', 'did':
current_user['id']} # returns 200 and the admin field
and the 1id field
return {'status': 200} # otherwise returns 200

@router.put("/edit")

async def edit_user(form_data: UserEdit, current_user=Depends(
get_user)):
return

api/api/crypto.py

This file contains the API routes required to get cryptocurrency data from the API server. It
uses the Binance class which is defined in another file to get historical data. The get_price
function can take two inputs, one for the ticker (e.g. BTCUSDT), and one for the time in UNIX
timestamp format. | have chosen to use UNIX to represent time as it can be represented as an
integer, making it easy to work with and parse.

from core.auth {import get_user, get_admin

import datetime

from core.binance import Binance

from fastapi import APIRouter, Depends, HTTPException, status,
Request

crypto_api = router = APIRouter()
binance = Binance() # creates a new 1instance of the Binance
class

@router.get("/{ticker}/{time}") # defines an endpoint that can
take a ticker and a time parameter
def get_price(ticker, time, current_user=Depends(get_user)):
start = int(time) - 1800 # sets the start variable to the
time parameter minus 30 minutes
stop = int(time) + 5400 # sets the stop variable to the time
parameter plus 90 minutes

Arthur Robertson 84

Cryptica Social Media Analysis Application NEA

return binance.get_historic(ticker, 'lm', str(start), str(
stop)) # returns the response of the get_historic
function from the Binance class

api/api/news.py

This file contains the API routes for everything related to the News section of the site. This
includes routes for fetching news, deleting news, searching for news, posting comments, and
more.

import db.crud as crud

from core.auth {import get_user, get_admin

import datetime

from fastapi import APIRouter, Depends, HTTPException, status,
Request

news_router = router = APIRouter ()

@router.get('/")
async def get_news(request: Request): # defines an endpoint that
reutnrs all the news
return await request.state.db.get_news() # returns the
response of the get_news function from the crud class

@router.get('/comments/")
async def all_comments(request: Request, current_user=Depends(
get_admin)): # defines an endpoint that returns all the
comments. Requires admin permissions
return await request.state.db.get_comments() # returns the
response of the get_comments function from the crud class

@router.get('/{id}")
async def get_news_by_1id(id, request: Request): # defines an
endpoint that returns a news item by 1its 1id
return await request.state.db.get_news_by_id(id) # returns
the response of the get_news_by_id function from the crud
class

@router.get('/{id}/comments')
async def get_news_comments(id, request: Request): # defines an
endpoint that returns all the comments for a news qitem
return await request.state.db.get_comments_by_news_id(id) #
returns the response of the get_comments_by_news_-id

Arthur Robertson 85

Cryptica Social Media Analysis Application NEA

23
24
25

26
27

28

29
30

31

32

33

34

35

36
37
38
39
40
41
42
43

44

function from the crud class

@router.post('/{id}/comments")
async def create_comment(id: {int, comment: dict, request:
Request, current_user=Depends(get_user)): # defines an
endpoint that creates a comment for a news item. Requires
user to be authenticated and to provide a comment
comments = {'user_id': current_user['id'], 'news_id': 1id,
'date': datetime.datetime.now().strftime("%Y-%m
-%d %H:%M:%S"), 'content': comment['content'
1} # creates a dictionary with the user -id,
news id, date and content of the comment
return await request.state.db.create_comment(comments) #
returns the response of the create_comment function from
the crud class. Supplied with the comments dictionary

@router.delete('/{id}/comments/{comment_id}') # defines an
endpoint that deletes a comment for a news item. Requires
admin permissions or the user to be the author of the comment

async def delete_comment(id: 1int, comment_id: 1int, request:
Request, current_user=Depends(get_user)): # supplied with the

news id and comment -d
comment = await request.state.db.get_comments_by_id(
comment_1id) # returns the response of the
get_comments_by_id function from the crud class
if comment['user_1id'] == current_user['id'] or current_user][
'admin']: # checks if the user s the author of the
comment or an admin
return await request.state.db.delete_comment(comment_id)
deletes the comment using the delete_comment
function from the crud class
else: # if the user is not the author of the comment or an
admin
raise HTTPException(# returns a 401 unauthorized error
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Unauthorized",
headers={"WWW-Authenticate": "Bearer"},

)

@router.post('/"')
async def create_news(article: dict, request: Request,
current_user=Depends(get_admin)): # defines an endpoint that
creates a news item. Requires admin permissions
return await request.state.db.create_news(article) # returns
the response of the create_news function from the crud

Arthur Robertson 86

Cryptica Social Media Analysis Application NEA

class. Supplied with the article dictionary

@router.post('/search'")
async def search_phrase(search: dict, request: Request): #
defines an endpoint that searches for a phrase in the news
items
return await request.state.db.get_news_by_phrase(search['
phrase']) # returns the response of the
get_news_by_phrase function from the crud class. Supplied
with the phrase parameter

api/api/twitter.py

This file uses Twint, a python module for fetching tweets. It has a /search route that allows
users to request tweets with a selection of search paramaters.

import random

import re

from types import SimpleNamespace

from fastapi +import APIRouter, Request, Depends
import db.crud as crud

from core.auth {dimport get_user, get_admin
import twint

import time

import nest_asyncio

from utils.sentiment import Sentiment
nest_asyncio.apply()

twitter_router = router = APIRouter ()

twitter = twint.Config()
sentiment = Sentiment() # load the sentiment class

def get_user_details(username): # defines a function that gets

user details from twitters API using twint

u = twint.Config() # creates a new instance of the twint
class

u.Username = username # sets the username parameter to the
username supplied

u.Store_object = True # sets the store_object parameter to
true

twint.run.Lookup(u) # runs the Lookup function from the
twint class

Arthur Robertson 87

Cryptica Social Media Analysis Application NEA

22

23
24

25

26
27
28
28
30
31
32
33

34
35

36

37

38

39

40

41

42

43

44

45

46

return twint.output.users_list[-1] # returns the last item
in the users_1list variable from the twint class

@router.get('/search') # defines an endpoint that can take a

query parameter

def get_tweets_phrase(coin=None, 1imit=100, minlikes=0,

minretweets=0, minreplies=0, username=None, since=None, until
=None, popular=None, retweets=None, sentiment=False,
hide_tweets=None, current_user=Depends(get_user)):
tweets = [] # creates an empty list to store the tweets
if username: # if the username parameter is supplied
username = re.sub(r'\W+', '', username) # removes all
non a-Z characters from the username parameter
user = get_user_details(username) # gets the user
details from the twint class
twitter.Username = username.lower () # sets the username
parameter to the username supplied
if hide_tweets: # if the hide_tweets parameter 1is supplied
return user # returns the user details
if int(limit) > 1000: # if the limit parameter is greater
than 1000
limit = 1000 # cap the limit parameter to 1000
twitter.Store_object = True # sets the store_object
parameter to true
twitter.Store_object_tweets_T1list = tweets # sets the
store_object_tweets_list parameter to the tweets list
twitter.Hide_output = True # sets the hide_output parameter
to true
twitter.Min_likes = int(minlikes) # sets the min_likes
parameter to the minlikes parameter
twitter.Min_replies = int(minreplies) # sets the min_replies
parameter to the minreplies parameter
twitter.Min_retweets = int(minretweets) # sets the
min_retweets parameter to the minretweets parameter
twitter.Search = coin # sets the search parameter to the
coin parameter
twitter.Limit = int(limit) # sets the limit parameter to the
limit parameter
twitter.Since = since # sets the since parameter to the
since parameter
twitter.Until = until # sets the until parameter to the
until parameter
twitter.Popular_tweets = bool(popular) # sets the
popular_tweets parameter to the popular parameter
twitter.Filter_retweets = bool(retweets) # sets the

Arthur Robertson 88

Cryptica Social Media Analysis Application NEA

filter_retweets parameter to the retweets parameter

47 for a in range(l, 5): # loops through the range of 1 to 5.
this is because twitter's API 1is buggy, and sometimes
returns nothing even though there 1is data to be found.
repeating the request 5 times if it returns nothing is a
workaroud to this dissue

48 twint.run.Search(twitter) # runs the Search function

from the twint class

49 if len(tweets) > 0: # if the length of the tweets list

is greater than 0

50 break # break the Tloop

51 if sentiment: # if the sentiment parameter 1is supplied

52 for tweet in tweets: # loops through the tweets list

53 tweet.sentiment = sentiment.predict(tweet.tweet) #

sets the sentiment parameter of each tweet to the
sentiment of the tweet

54 if user: # if the user parameter 1is supplied

55 return tweets, user # returns the tweets and the user

details

56 if len(tweets) == 0: # if the length of the tweets list is 0

57 print("No tweets found for ", username) # print a

message to the console

58 return tweets # returns the tweets

api/api/users.py

This file contains the collection of API routes required to handle user authentication.

O o0 NO Ul WDN K

=
o

11

12

from db.schemas 1import UserCreate, UserEdit
from fastapi import APIRouter, Depends, Request

import db.crud as crud
from core.auth +import get_user, get_admin

users_router = router = APIRouter ()

@router.get("/admins")
async def admins(request: Request, current_user=Depends(
get_admin)): # defines an endpoint that returns all the
admins
return await request.state.db.get_admins() # returns the
response of the get_admins function from the crud class

Arthur Robertson 89

Cryptica Social Media Analysis Application NEA

13
14

15

16
17
18

19

20
21
22

23

24
25
26
27
28

29

30
31
32

33

34
35
36
37

38

@router.get("/count")
async def user_count(request: Request, current_user=Depends(
get_admin)): # defines an endpoint that returns the number of
users
return await request.state.db.count_users() # returns the
response of the count_users function from the crud class

@router.get("/",)
async def users(request: Request, current_user=Depends(get_admin
)): # defines an endpoint that returns all the users
return await request.state.db.get_users() # returns the
response of the get_users function from the crud class

@router.get("/me")
async def user_me(request: Request, current_user=Depends(
get_user)): # defines an endpoint that returns the current
user
return await request.state.db.get_profile(current_user['id'
], True) # returns the response of the get_profile
function from the crud class. Supplied with the user -d
and True for the profile parameter

@router.get("/{user_id}")
async def user_details(request: Request,
user_id: 1int,
current_user=Depends(get_admin)): #
defines an endpoint that returns the
user with the supplied -id
return await request.state.db.get_user(user_id) # returns
the response of the get_user function from the crud class

@router.put("/me")
async def edit_profile(request: Request, data: UserEdit,
current_user=Depends(get_user)): # defines an endpoint that
edits the current user's profile
return await request.state.db.edit_profile(current_user['
id'], data) # returns the response of the edit_profile
function from the crud class

@router.put("/{user_id}")
async def user_edit(request: Request, user_id: 1int, user:
UserEdit, current_user=Depends(get_admin)): # defines an
endpoint that edits the user with the supplied -id
return await request.state.db.edit_user(user_id, user) #

Arthur Robertson 90

Cryptica Social Media Analysis Application NEA

returns the response of the edit_user function from the
crud class
39
40 @router.delete("/{user_id}")
41 async def user_delete(request: Request,
42 user_id: 1int,
43 current_user=Depends(get_admin),
44): # defines an endpoint that deletes the
user with the supplied -id
45
46 return await request.state.db.delete_user(user_id) #
returns the response of the delete_user function from the
crud class
47
48 @router.post("/™)
49 async def user_create(request: Request, user: UserCreate,
current_user=Depends(get_admin),): # defines an endpoint that
creates a new user. requires admin privileges
50 return await request.state.db.create_user(user) # returns
the response of the create_user function from the crud
class
51
52 @router.get("/{user_id}/profile")
53 async def user_comments(request: Request, user_id: int): #
defines an endpoint that returns the user's comments
54 return await request.state.db.get_profile(user_id, False) #
returns the response of the get_profile function from
the crud class
api/core/auth.py

This file contains a collection of functions that are used throughout the API to verify and get

user’s details.

1
2
3
4
5

from fastapi import Depends, HTTPException, status, Request
from core import security

async def get_user(request: Request): # defines the get_user
function. this function is used to get the current user from
the request, which can then be used to verify the user's
identity

Arthur Robertson 91

Cryptica Social Media Analysis Application NEA

(00]

10
11
12

13
14

15

16

17
18
19

20

21
22
23
24
25
26

27
28
29
30

31

32
33

34
35

36

error = HTTPException(# defines the error variable as an
HTTPException
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Failed to validate credentials",
headers={"WWW-Authenticate": "Bearer"},

)

token = request.headers['Authorization'].replace('Bearer ',
'') # gets the token from the request headers
try: # attempts to decode the token
payload = security.AccessToken(token=token) # creates an
access token object using the AccessToken class
payload_data = payload.get_data() # gets the data from
the payload
email = payload_data['sub'] # gets the email from the
payload
if email is None: # if the email 1is None
raise error # returns the error)
permissions = payload_data['permissions'] # gets the
permissions from the payload
except Exception as e: # if the token is dinvalid and the RSA
signature 1is invalid
print(e)
raise error # returns the error
user = await request.state.db.get_user_by_email(email)
if user dis None: # if the user is None
raise error # returns the error

if user['admin'] == False and permissions == 'admin': # if
the user is not an admin and the permissions in the token
are admin

raise error # returns the error
return user # returns the user

async def get_admin(# defines the get_admin function. this is

similar to the get_user function, but it only returns users
with admin permissions
current_user=Depends(get_user), # gets the current user from
the request

if not current_user['admin']: # if the current user is not
an admin
raise HTTPException(# returns an HTTPException
status_code=403, detail="The user doesn't have
enough privileges"

Arthur Robertson 92

Cryptica Social Media Analysis Application NEA

return current_user # returns the current user if the user
is authenticated and the user is an admin

async def authenticate(request: Request, email, password): #
defines the authenticate function. this function is used to
authenticate the user
user = await request.state.db.get_user_by_email(email) #
gets the user from the database using the email
if not user: # if the user is not found
return False # returns false
if not security.verify_password(password, user['
hashed_password']): # if the password is not correct and
the supplied password hash 1is not equal to the hashed
password stored in the database
return False # returns false
return user # returns the user if the password is correct

async def sign_up(request: Request, email, password, first_name,

last_name): # defines the sign_up function. this function is

used to sign up a new user

user = await request.state.db.get_user_by_email(email) #
gets the user from the database using the email

if user: # if the user 1is found

return False # user already exists

return await request.state.db.create_user(# else creates
the user using the create_user function and a dictionary
containing the user's supplied details

{
'email': email,
'password': password,
'first_name': first_name,
'"last_name': last_name,
'admin': False}
)
api/core/binance.py

This file contains a class for interacting with Binance’s API to fetch data related to Cryptocur-
rencies. It inherits from the third party python-binance module.

import os
from binance.client 1import Client as Client

Arthur Robertson 93

Cryptica Social Media Analysis Application NEA

class Binance(Client): # creates a new class called Binance that
inherits from the Client class from the binance library
def __init__(self):
self.binance_key = os.getenv('BINANCE_KEY') # gets the
BINANCE_KEY from the environment variables
self.binance_secret = os.getenv('BINANCE_SECRET') # gets
the BINANCE_SECRET from the environment variables
super().__init__(self.binance_key, self.binance_secret)
calls the __init__ function from the binance
library and passes the BINANCE_KEY and BINANCE_SECRET
as parameters

def get_historic(self, ticker, interval, start, stop): #
creates a function called get_historic that takes a
ticker, 1interval, start and stop as parameters
return self.get_historical_klines(ticker, interval,
start, stop) # returns the response of the
get_historical_klines function from the binance
library

api/core/security.py

Thisfile containsthe AccessTokenand Argon2 class. The Argon2 classis used for hasing and
verifying passwords using the argon2 module. The AccessToken class is used for generating
and verifying JSON Web Tokens. The AccessToken class can be initialised with two methods.
One, by supplying user data to be turned into a JSON Web Token. In this case, upon initilisation
a JWT will be generated and accessable through the class. The other option is to intiliase the
class by supplying it with an existing JSON Web Token. This can be used to verify that a token

genuinity before allowing it to be accessed.

from passlib.hash import argon2 # from passlib.hash import the
argon2 class

from datetime import datetime, timedelta # import the datetime
and timedelta modules

import os # import the os module for loading environment
variables

from utils.base64 import Base64 # import the base64 class from
utils.baseb64

from OpenSSL import crypto # 1import the OpenSSL crypto module

from OpenSSL.crypto import X509 # import the X509 class from the

Arthur Robertson 94

Cryptica Social Media Analysis Application NEA

10
11
12
13
14
15
16
17

18

19

20

21

22

23

24

25

26

27

28

29

OpenSSL crypto module
import json # import the json module for loading and dumping
JSON

class Argon2:
def __init__():
return

def hash_password(password): # define the hash_password
function
return argon2.hash(password) # return the argon2 hash of
the password, using the argon2 class and an
automatically generated salt

def verify_password(password, password_hash): # define the
verify_password function

result = password_hash == argon2.using(salt=Base64.
decode ((
password_hash.split(',')[2].split('$"')[1] + '==").

encode('utf-8'))).hash(password) # return the
result of the password_hash being equal to the
argon2 hash of the password, using the argon2
class and the salt from the password_hash
return result # if they are equal it will return true,
otherwise it will return false. If true the password
is correct, if false the password 1is incorrect

base64 = Base64() # create a new instance of the Base64 class
class AccessToken(): # create Access Token Class
def __init__(self, data=None, token=None): # initialises the
class, allows the data and token to optionally be passed
in
self._private_key = os.getenv('RSA_PRIVATE_KEY') # gets
the private key from the environment variables
self._public_key = os.getenv('RSA_PUBLIC_KEY') # gets
the public key from the environment variables
self.algorithm = "RS256" # variable that sets the
algorithm to RS256
self.header = '{"alg":"'"+self.algorithm+'" "typ" :"JWT"}"'
variable that sets the header to the algorithm and
type
self.expires = 60 * 24 x 7 # sets the expiry of the
token to 7 days (60 seconds * 24 hours * 7 days)
self.type = 'bearer' # this is the name of the header -n
the web request that the token is sent 1in

Arthur Robertson 95

Cryptica Social Media Analysis Application NEA

30
31
32

33
34

35

36
37

38

39

40

41

42

43

44

45
46

47
48
49
50
51
52
53
54
55
56

57
58

if data: # if the data 1is passed in
self.data = data
add expiry to data. expiry is current timestamp +
expiry
self.data['exp'] = datetime.timestamp(
datetime.now() + timedelta(minutes=self.expires)
)
self.token = self.create_access_token() # create the
token using the create_access_token function
elif token: # if the token is passed 1in
self.token = token # set the token to the token
passed 1in
if self.verify_token() != True: # check if the token
is valid and the signature matches the public
key
raise Exception("Invalid token") # if not raise
an exception
self.data = self.__decode_token() # decode the token
and set the data to the decoded token
if "exp" not 1in self.data: # if the expiry is not 1in
the data
raise Exception("Token has no expiry") # raise
an exception
if self.data["exp"] < datetime.utcnow().timestamp():
if the expiry 1is less than the current
timestamp
raise Exception("Token has expired") # raise an
exception
else: # if no data or token 1is passed 1in
raise ValueError('You must provide either data or
token') # raise an exception
self.__init__()

def get_token(self): # get the token
return self.token

def get_data(self): # get the data
return self.data

def __decode_token(self): # decode the token
header, body, signature = self.token.split('.') # split
the token into the header, body and signature at the

body_decoded = Base64.decode(
body.replace('-', "+').replace('_', "'/'")+'==") #

Arthur Robertson 96

Cryptica Social Media Analysis Application NEA

59
60

61
62

63

64

65

66
67

68

69
70

71
72
73
74
75

76
77

78
79

80

81

82

def

def

decode the body with base64. Replace the - and _
with + and /
return json.loads(body_decoded) # return the decoded
body as a json object

verify_token(self): # verify the token
header, body, signature = self.token.split('."') # split
the token into the header, body and signature at the

signature_decoded = Base64.decode(
signature.replace('-"', '"+').replace('_', "'"/'")+'==")
decode the signature with base64. Replace the -
and _ with + and /
X509 = X509() # create a new x509 object. this 1is used
to load the public key to then verify the signature
x509.set_pubkey(crypto.load_publickey(
crypto.FILETYPE_PEM, self._public_key)) # load the
public key from the public key variable
try: # try to verify the signature
crypto.verify(x509, signature_decoded,

(header + '.' + body), 'sha256') #
verify the signature against the
header and body, using sha256 as
the hashing algorithm and RSA")

return True # if the signature 1is verified return
true
except Exception as e: # if the signature 1is not
verified and an exception 1is raise return false")
print(e)
return False

create_access_token(self): # create the access token
header_encoded = base64.encode(self.header).strip('=") #
encode the header with base64. Strip the = from the
end
payload_encoded = base64.encode(
str(self.data).replace("'", '"").replace(" ", "")).
strip('=') # encode the payload with base64.
Strip the = from the end
body = header_encoded + '.' + payload_encoded # combine
the header and payload
pr_key = crypto.load_privatekey(crypto.FILETYPE_PEM,
self._private_key) # load the private key from the
private key variable
signature = crypto.sign(pr_key, body, 'sha256') # sign

Arthur Robertson 97

Cryptica Social Media Analysis Application NEA

the body with sha256 and the private key with RSA

signature_base64 = Base64.encode(signature).decode(
'ascii').strip('=").replace('+', '-'").replace('/', '
_') # encode the signature with base64. Strip the
= from the end. Replace the + and / with - and _
jwt = body + '.' + signature_base64 # combine the body
and signature
return jwt # return the jwt

def __str__(self): # string representation of the token
return str(self.token)

def __repr__(self): # representation of the token
return str(self.token)

api/db/crud.py

This file contains a selection of classes for working with the database section of the application.
The Sess+on class is used for low level interactions with the database through the asynpg

python module. Then, the Tab'le class inherits from Session and provides some basic
functions for working with general tables, such as a function to count how many rows in
the database there are. Finally, there are three classes for each of the separate tables in
my program. These contain functions specific to each of the tables, however they use the
functionality inherited from the previous two classes. As mentioned in the

from core.security import hash_password
import asyncpg

class Session(): # creates a new class called Session
def __init__(self, url):
self.url = os.getenv(url), # gets the url from the
environment variables
self._cursor = None # creates a cursor variable
self.con = None # creates a connection variable

async def connect(self): # creates a function called connect
self.connection_pool = await asyncpg.create_pool(dsn=
self.url[0], max_size=3, min_size=1) # creates a
connection pool using the url from the environment
variables and the max_size and min_size parameters

Arthur Robertson 98

Cryptica Social Media Analysis Application NEA

12
13
14
15
16

17
18

19
20
21
22
23
24

25

26
27

28

29
30

31

32

33

34

35

36

37

38

39

self.db = self.connection_pool

async def close(self): # creates a function called close
if self.connection_pool: # checks if the connection pool
exists
await self.connection_pool.close() # closes the
connection pool

async def execute(self, query, xargs): # creates a function
called execute
async with self.connection_pool.acquire() as conn: #
acquires a connection from the connection pool
return await conn.execute(query, *args) # executes
the query and returns the result

class Table(Session): # creates a new class called Table
def __init__(self, url, table_name): # initializes the class
super().__init__(url) # initializes the super class with
the url passed 1in
self.table_name = table_name # sets the table name
variable to the table_name passed 1in

async def drop_table(self): # creates a function to drop the
table in the class
await self.execute('DROP TABLE $1', self.table_name) #
drops the table

async def get_all(self): # creates a function to get all the
data from the table
query = f'SELECT * FROM {self.table_name}' # creates a
query to get all the data from the table
return await self.execute(query)

async def get_by_column(self, column, 1id): # creates a
function to get all the data from the table by a column
query = f'SELECT * FROM {self.table_name} WHERE {column}
= $§1' # creates a query to get all the data from the
table by a column
return await self.execute(query, 1id)

async def count(self): # creates a function to count the
number of rows in the table
query = f'SELECT COUNT(x) FROM {self.table_name}' #
creates a query to count the number of rows 1in the
table

Arthur Robertson 99

Cryptica Social Media Analysis Application NEA

40
41
42
43
44

45
46
47

48
49

50
51
52
53

54

55
56

57

58
59

60

61
62

63
64

return await self.execute(query)

class News(Table): # creates a new class called News

def __init__(self, url): # dinitializes the class
super().__init__(url, 'news') # 1dnitializes the super
class with the url passed in and the table_name
passed 1in

async def create_table_news(self): # creates a function to
create the table in the class
await self.execute(# creates a table called news
'"CREATE TABLE IF NOT EXISTS news (id serial PRIMARY
KEY, publication varchar(255), author varchar
(255), title varchar(511), description varchar
(1023), url varchar(1023), imageUrl varchar(1023)
, date varchar(255), content varchar(1023))'
)

async def get_news_and_comments(self):
news_and_comments = await self.fetch('SELECT * FROM news
INNER JOIN comments ON news.id = comments.news_-id
ORDER BY date DESC') # creates a query to get all the
data from the table, using dinner join to get the
comments
if not news_and_comments: # checks if the
news_and_comments variable is empty
return None # returns none
return news_and_comments # returns the news_and_comments
variable

async def get_news_and_comments_by_news_id(self, news_id):
news_and_comments = await self.fetch('SELECT * FROM news
INNER JOIN comments ON news.id = comments.news_-id
WHERE news.id = $1 ORDER BY date DESC', {dnt(news_id))
creates a query to get all the data from the table
, using inner join to get the comments, sorting the
comments by date
if not news_and_comments: # checks if the
news_and_comments variable is empty
return None # returns none
return news_and_comments # returns the news_and_comments
variable

Arthur Robertson 100

Cryptica Social Media Analysis Application NEA

65

66

67
68
69
70
71

72

73
74
75
76
77

78

79
80
81
82
83

84

85
86
87
88
89

90
91
92

async def get_news(self): # gets all news from the table

sorted by date

news = await self.fetch('SELECT id, title, publication,
imageUrl, description, date FROM news ORDER BY date
DESC'")

if not news:
return None

return news

async def get_news_by_title(self, title): # gets all news
from the table with matching title
news = await self.fetch('SELECT * FROM news WHERE title
= $1', title)
if not news:
return None
return news

async def get_news_by_author(self, author): # gets all news
from the table with matching author
news = await self.fetch('SELECT * FROM news WHERE author
LIKE $1 ORDER BY date DESC', author)
if not news:
return None
return news

async def get_news_by_phrase(self, phrase, limit=5): # gets

all news from the table with matching phrase in the title

or description or content

news = await self.fetch('SELECT title, imageurl,
publication, id, date FROM news WHERE UPPER(title)
LIKE $1 OR UPPER(description) LIKE $1 OR UPPER(
content) LIKE $1 ORDER BY date DESC LIMIT $2', (f'%{
phrase}%'.upper()), Llimit) # %{phrasel}% is a wildcard
to search for the phrase in the title or description
or content

if not news:
return None

return news

async def get_news_by_1id(self, id): # gets all news from the
table with matching -id
if not 1id:
return None
news = await self.fetchrow('SELECT title, content,
author, publication, imageurl, url, date FROM news

Arthur Robertson 101

Cryptica Social Media Analysis Application NEA

98
94
95

96
97
98

99
100
101

102

103

104
105
106
107

108
109
110
111
112
113

114

115

116
117
118

WHERE 1id = $1', 1int(id)) # creates a query to get all
the data from the table with matching -id
if not news:
return None
comments = await self.fetch('SELECT comments.id, user_-id
, content, date, first_name, last_name FROM comments
INNER JOIN users ON comments.user_id = users.id WHERE
news_id = $1 ORDER BY date DESC', {int(id)) # query
to get all the comments from the table with matching
id using inner join to get the user
if not comments:
return dict(news) # return the news dictionary
return {x*xdict(news), 'comments': comments} # returns
the news dictionary with the comments dictionary

async def create_news(self, news):
await self.execute(# insert into news table with
provided news dictionary
"INSERT INTO news (publication, author, title,
description, content, url, 1imageUrl, date) VALUES
($1, $2, $3, $4, $5, $6, $7, $8)',
news['publication'], news['author'], news['title'],
news['description'], news['content'], news['url'
1, news['imageUrl'], news['date']

)

async def delete_news(self, 1id):
await self.execute(# delete from news table with
provided -1id
'DELETE FROM news WHERE 1id = $1', 1int(id)
)

return 1id

async def edit_news(self, id, news):
await self.execute('UPDATE news SET title = $1,
description = $2, content = $3, author $4, date =
$5 WHERE id = $6',
news['title'], news['description'], news
['content'], news['author'], news['
date'], 1int(
id) # update news table by id with
provided news dictionary

return news

Arthur Robertson 102

Cryptica Social Media Analysis Application NEA

119
120
121
122

123
124
125

126
127
128
129
130
131
132
133
134

135
136
137
138

139
140
141
142
143
144

145
146
147
148
149
150

151

class Comments(Table): # creates a new class called Comments

def __init__(self, url):
super().__init__(url, 'comments') # initializes the
super class with the url passed in and the table_name
passed 1in

async def get_comments_by_id(self, 1id):
comments = await self.fetchrow('SELECT * FROM comments
WHERE 1id = $1', 1int(id)) # get comments from comments
table with matching -id
if not comments:
return None
return dict(comments)

async def create_table_comments(self):
await self.execute(# create comments table
'"CREATE TABLE IF NOT EXISTS comments (id serial
PRIMARY KEY, user_id int, news_id 1int, content
varchar (2000), date varchar(255))"

)

async def get_comments(self):
comments = await self.fetch('SELECT * FROM comments
ORDER BY date DESC') # get all comments sorted by
date
if not comments:
return None
return comments

async def get_comments_by_news_id(self, news_id):
comments = await self.fetch('SELECT * FROM comments
WHERE news_id = $1 ORDER BY date DESC', -{int(news_-id))
get comments matching a news article id
if not comments:
return None
return comments

async def create_comment(self, comment):
await self.execute(# create comment in comments table
using provided comment dictionary
"INSERT INTO comments (user_id, news_id, content,
date) VALUES ($1, $2, $3, $4)',

Arthur Robertson 103

Cryptica Social Media Analysis Application NEA

152

153
154
155
156
157

158
159
160
161
162
163

164

165

166
167
168
169
170

171
172
173
174

175
176

177

178

comment['user_id'], comment['news_id'], comment['
content'], comment['date']

)

return dict(comment)

async def delete_comment(self, -id):
await self.execute(# delete comment from comments table
with provided -d
'DELETE FROM comments WHERE 1id = $1', {int(id)
)

return 1id

async def edit_comment(self, id, comment):
await self.execute('UPDATE comments SET user_id = $1,
news_id = $2, content = $3, date = $4 WHERE id = $5',
comment['user_id'], comment['news_id'],
comment['content'], comment['date'],
int(
id) # update comments table by 1id
with provided comment dictionary
)
return comment
class Users(Table): # creates a new class called Users
def __init__(self, url):
super().__init__(url, 'users') # initializes the super
class with the url passed in and the table_name
passed 1in

async def get_profile(self, user_id, me=False):
if me: # if the user is the current user
user = await self.fetchrow('SELECT 1id, first_name,
last_name, email, admin FROM users WHERE id = $1'
, user_id) # get users info including email and
admin status from the table
else: # if the user 1is not the current user
user = await self.fetchrow('SELECT 1id, first_name,
last_name FROM users WHERE id = $1', user_id) #
just get basic user info (name) from the table
comments = await self.fetch('SELECT comments.id, news_-id
, comments.content, comments.date, news.title FROM
comments INNER JOIN news ON comments.news_id = news.
id WHERE user_id = $1 ORDER BY date DESC', 1int(
user_id)) # fetch all comments from the table with
matching user 1id
if not comments:

Arthur Robertson 104

Cryptica Social Media Analysis Application NEA

179
180

181
182
183
184
185

186
187
188
189
190
191

192
193
194
195
196
197

198
199
200
201
202
203

204
205
206
207
208
209

210
211
212

return user
return {*xuser, 'comments': comments} # return the user
dictionary with the comments dictionary

async def get_user(self, 1id):
user = await self.fetchrow('SELECT * FROM users WHERE -d
= $1', id) # select all users from the table with
matching -id
if not user:
return None
return dict(user)

async def get_user_by_first_name(self, first_name):
user = await self.fetchrow('SELECT * FROM users WHERE
first_name = $1', first_name) # select all users from
the table with matching first name
if not user:
return None
return dict(user)

async def get_user_by_last_name(self, last_name):
user = await self.fetchrow('SELECT *x FROM users WHERE
last_name = $1', last_name) # select all users from
the table with matching last name
if not user:
return None
return dict(user)

async def get_admins(self):
user = await self.fetch('SELECT * FROM users WHERE admin
= true') # select all users from the table with
admin status
if not user:
return None
return user

async def get_user_by_email(self, email):
user = await self.fetchrow('SELECT * FROM users WHERE
email = $1', email) # select all users from the table
with matching email
if not user:
return None
return dict(user)

Arthur Robertson 105

Cryptica Social Media Analysis Application NEA

213

214 async def edit_profile(self, id, user):

215 await self.execute('UPDATE users SET first_name = $1,
last_name = $2, email = $3, hashed_password = $4,
admin = $5 WHERE id = $6',

216 user['first_name'], user['last_name'],

user['email'],

217 hash_password(user['password']), user['

admin'], -id

218) # update users table by id with

provided user dictionary

219 return user

220

221 async def create_user(self, user):

222 await self.execute(

223 "INSERT INTO users (first_name, last_name, email,
hashed_password, admin) VALUES ($1, $2, $3, $4,
$5) ',

224 user['first_name'], user['last_name'], user['email'
1,

225 hash_password(user['password']), user['admin'] #
create user 1in users table using provided user
dictionary

226)

227 return dict(user)

228

229 async def delete_user(self, 1id):

230 await self.execute(

231 'DELETE FROM users WHERE 1id = $1', -id

232) # delete user from users table with provided -id

233 return 1id

234

235

236 async def edit_user(self, 1id, user):

237 await self.execute('UPDATE users SET first_name = $1,
last_name = $2, email = $3, hashed_password = $4,
admin = $5 WHERE id = $6',

238 user['first_name'], user['last_name'],

user['email'],

239 hash_password(user['password']), user['

admin'], -1id

240) # update users table by 1id with

provided user dictionary

241 return user

242

Arthur Robertson 106

Cryptica Social Media Analysis Application NEA

243 async def create_table_users(self):

244 await self.execute(

245 '"CREATE TABLE IF NOT EXISTS users (id serial PRIMARY
KEY, first_name varchar(255), last_name varchar
(255), email varchar(255), hashed_password
varchar (255), admin boolean)'

246) # create users table if it doesn't exist

api/db/schemas.py

The schemas. py file is used by FastAPI to validate data being passed to the program by

users.

1 from pydantic import BaseModel # pydantic is a lightweight
schema validation library for Python. it is used to validate
the data that is passed to the API.

2

3 class UserBase(BaseModel): # defines the UserBase class. this
class is used to validate the data that is passed to the API.

it inherits from the BaseModel class

4 email: str # defines the email field as a string

5 admin: bool = False # defines the admin field as a boolean.

this field is optional and defaults to false

6 first_name: str = None # defines the first_name field as a

string. this field is optional and defaults to None

7 last_name: str = None # defines the last_name field as a

string. this field is optional and defaults to None

8

9 class UserlLogin(UserBase): # defines the UserLogin class

10 password: str # defines the password field as a string

11

12 class UserCreate(UserBase): # defines the UserCreate class

13 password: str # defines the password field as a string

14

15 class UserEdit(BaseModel): # defines the UserEdit class

16 password: str # defines the password field as a string

17 email: str = None # defines the email field as a string.
this field is optional and defaults to None

18 new_password: str = None # defines the new_password field as

a string. this field is optional and defaults to None

19 admin: bool = False # defines the admin field as a boolean.

this field is optional and defaults to false

Arthur Robertson 107

Cryptica Social Media Analysis Application NEA

20 first_name: str = None # defines the first_name field as a
string. this field is optional and defaults to None

21 last_name: str = None # defines the last_name field as a
string. this field is optional and defaults to None

22

23 class User(UserBase):

24 id: int # defines the id field as an 1integer

25

26 class TokenData(BaseModel):

27 email: str = None # defines the email field as a string.
this field is optional and defaults to None

28 permissions: str = "user" # defines the permissions field as

a string. this field is optional and defaults to "user"
api/utils/base64.py

This file contains a class for encoding and decoding base64.

1 class Encoding:
def add_zeros(self, binary): # defines the add_zeros method

3 if len(binary) % 8: # if the length of the binary string
is not divisible by 8
4 binary = '0' + binary # adds a zero to the beginning
of the binary string
5 return self.add_zeros(binary) # calls the method

again recursively

6 else: # otherwise

7 return binary # returns the binary string

8

9 class Base64(Encoding): # creates a class called Base64 that

inherits from Encoding

10

11 def __1init__(self): # initializes the class

12 self.table = '
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789
+/' # defines a table of allowed characters for
base64 encoding

13 self.__init__()

14

15 def encode(self, text): # defines the encode method

16 binary = '' # defines a variable to store the binary
representation of the text

17

Arthur Robertson 108

Cryptica Social Media Analysis Application NEA

18

g

20

21

22

23

24

25
26

27

28

29

30

31
32

33
34
35
36

37

38
39

40
41

def

for c in text: # iterates through the characters 1in the
text
binary += self.add_zeros(str(bin(ord(c)))[2:]) #
converts the character to its binary
representation and adds it to the binary string
with the add_zeros method
while len(binary) % 3: # while the length of the binary
string is not divisible by 3
binary += '00000000' # adds 8 zeros to the end of
the binary string
for i in range(6, len(binary) + int(len(binary) / 6), 7)
diterates through the binary string, starting at
the 6th position, and every 7th position
binary = binary[:i] + " ' + binary[i:] # adds a
space to the binary string
binary = binary.split(' ') # splits the binary string
into a list of strings at the space

if '' din binary: # if the list contains an empty string
binary.remove('') # removes the empty string from
the list
base64 = '' # defines a variable to store the base64

representation of the text
for b in binary: # iterates through the binary strings

in the list

if b == '000000': # if the binary string is equal to
'000000"'
base64 += '=' # adds an equals sign to the

base64 string
else: # otherwise
base64 += self.table[int(b, 2)] # converts the
binary string to an integer and adds the
character at the index of the 1integer to the
base64 string
return base64 # returns the base64 string

decode(self, text): # defines the decode method
binary = '' # defines a variable to store the binary
representation of the text
for c in text: # iterates through the characters in the
text
if ¢ == '=': # if the character 1is an equals sign
binary += '000000' # adds 6 zeros to the binary
string
else: # otherwise
binary += self.add_zeros(str(bin(self.table.

Arthur Robertson 109

Cryptica Social Media Analysis Application NEA

42

43

44

45
46

47

48

49

50

51

index(c)))[2:]) # converts the character to
its binary representation and adds it to the
binary string with the add_zeros method

for i in range(8, len(binary) + int(len(binary) / 8), 9)

dterates through the binary string, starting at
the 8th position, and every 9th position
binary = binary[:i] + " ' + binary[i:] # adds a
space to the binary string

binary = binary.split(' ') # splits the binary string

into a list of strings at the space

if '' in binary: # if the 1list contains an empty string
binary.remove('') # removes the empty string from
the list
text = '' # defines a variable to store the text

representation of the text

for b in binary: # iterates through the binary strings

in the list
if not b == '00000000': # if the binary string is
not equal to '0O0OGOOC0'
text += chr(int(b, 2)) # converts the binary
string to an integer and adds the character
at the index of the integer to the text
string

return text # returns the text string

api/utils/sentiment.py

This class loads the sentiment analysis model trained on Google Collab, and makes it accessi-

ble through a class.

1 from keras.preprocessing.text import Tokenizer

2 from keras.preprocessing.sequence 1import pad_sequences

3 from keras.models import load_model

4

5 class Sentiment(Tokenizer): # class to predict sentiment of a
text, inherits from keras.preprocessing.text.Tokenizer

6 def __init__(self):

7 self.model = load_model("model.hdf5") # load model

8 super().__init__() # initialise class

9

10 def predict(self, text): # predict sentiment of text

11 sequence = self.texts_to_sequences([text]) # convert

text to sequence of tokens
Arthur Robertson 110

Cryptica Social Media Analysis Application NEA

t = pad_sequences(sequence, maxlen=200) # pad sequence
to 200 tokens

return self.model.predict(t) - 1 # return the models
prediction for the text as a number between 1 and -1

server/rsa/keygen.py

This file is responsible for generating RSA keys. It produces two pairs of numbers, for public
and private keys. | will need to use another program such as OpenSSL to convert to the two
pairs into the commonly used .PEM format, so that my API server can use them. How the
algorithm works is explained in the design section of this document.

import random

def miller_rabin(num):
S =num - 1 # s is the number minus 1
t = 0 # t is temporary variable set to 0

while s % 2 == 0: # while s is even, divide by 2
s =s // 2 # divide by 2
t =t + 1 # increment t

for x in range(40): # repeat 10 times, for 10 rounds
a = random.randint(2, num - 1) # generate a random
number between 2 and num - 1
v = (a **x s) % num # calculate v = (a”s) mod num
if v != 1: # if v is not 1,
i=0+# set i to 0
while v != num - 1: # while v is not num - 1
if i == t: # if 1 is equal to t,
return False # return false (not prime)
else: # else

i =1 + 1 # increment i
v = (vx*2) % num # calculate v = (v*2) mod
num

return True # return true (prime)

def generate_prime(keysize):
while True: # loop until we get a prime
num = random.randint(2**x(keysize-1),2*xxkeysize) #

Arthur Robertson 111

Cryptica Social Media Analysis Application NEA

generate a number of keysize bits

29 if miller_rabin(num) == True: # if the number is prime,
return it

30 return num # keep on running loop until we generate

a prime

31

32

33 def egcd(a, b):

34 if a == 0: # in the case that a is 0, we need to return b,

0, 1

35 return (b, 0, 1) # b is the gcd, 0 is x, 1 ds vy

36 else:

37 gcd, y, x = egcd(b % a, a) # recursively call the
function, with the inputs b mod a, and a

38 return (gcd, x - (b // a) * y, y) # return a tuple using

some of the output of the egcd function. // is
integer division.

39

40 # greatest common divisor

41 def gcd(a, b):

42 return egcd(a, b)[0] # return the gcd of a and b

43

44 keysize = 8

45

46 p = generate_prime(keysize) # generate a prime of keysize 8
47 g = generate_prime(keysize) # generate a prime of keysize 8
48

49 n =p x g # n is the product of p and ¢

50

51 while True: # generate value of e until we get one that is
coprime with n

52 e = random.randint(2 x* (keysize - 1), 2 *x (keysize)) #
generate a random number between 2" (keysize - 1) and 27(
keysize)

53 if gcd(e, (p - 1) * (g - 1)) == 1: # if the gcd of e and (p
- 1) x (q - 1) is 1,

54 break # break the loop

55

56 g, x, y = egcd(e, (p - 1) *x (q - 1)) # use the extended
euclidean algorithm to find the gcd of e and (p - 1) * (q -

1)

57 d =x % ((p-1) * (gq-1)) # d is the inverse of e mod (p - 1)
* (g - 1)

58

59

Arthur Robertson 112

Cryptica Social Media Analysis Application NEA

publickey = (n, e) # public key is n and e
privatekey = (n, d) # private key is n and d

print("public key:", publickey) # print the public key
print("private key:", privatekey) # print the private key

server/news/update.py

This file will be run periodically. It fetches new news articles from the News API, and adds
them to the database if they do not already exist. The News APl imposes a rate limit, so it
should not be run too frequently. A few times a day will suffice.

import requests

import os

from dotenv import load_dotenv
import asyncio

import asyncpg

import nest_asyncio

load_dotenv() # load the .env file
nest_asyncio.apply() # required to run the main function
asynchronously

database_url = os.getenv("DATABASE_URL") # set database_url to
the environment variable DATABASE_URL

api_key = os.getenv("NEWS_API_KEY") # set api_key to the
environment variable NEWS_API_KEY

keywords = ['crypto','bitcoin','ethereum','dogecoin','
cryptocurrency','nft','blockchain','defi'] # list of keywords
to search the api for
api_url = 'https://newsapi.org/v2/everything?q="' + '%200R%20"'.
join(keywords) + '&apiKey=' + api_key + '&pageSize=100&page=1
' # api url made with the api key and the keywords

async def main(): # main function (asynchronous)
conn = await asyncpg.connect(database_url) # connect to the
database using the database_url
req = requests.get(api_url) # request the api url and save
the response to req variable

count = await conn.fetchval('SELECT COUNT(*) FROM news') #
store the number of rows in the news table in count

Arthur Robertson 113

Cryptica Social Media Analysis Application

NEA

variable
22
23 for item 1in req.json()['articles']: # dterate through each
item in the articles array
24 news = { # convert the item to a dictionary
25 'publication': item['source']['name'],
26 'author': ditem['author'],
27 "title': item['title'],
28 'description': item['description'],
29 'url': ditem['url'],
30 "imageUrl': item['urlToImage'],
31 'date': ditem['publishedAt'],
32 'content': item['content']
33 }
34
35
36 n = await conn.fetch('SELECT * FROM news WHERE title =
$1', news['title']) # check if the news already
exists in the database with matching title
37 if not n: await conn.execute(# if the news does not
exist in the database, insert it using the news
dictionary
38 "INSERT INTO news (publication, author, title,
description, url, imageUrl, date, content) VALUES
(Sl $2, 58, $iy S8, 6, S1y S8)7,
39 news['publication'],
40 news['author'],
41 news['title'],
42 news['description'],
43 news['url'],
44 news['imageUrl'],
45 news['date'],
46 news['content']
47)
48
49
50
51
52 new_count = await conn.fetchval('SELECT COUNT(*) FROM news')
count again the number of rows in the news table
58 added = new_count - count # calculate the number of rows
added
54 print(added, "added.") # print the number of rows added
55 await conn.close() # close the connection to the database
56
Arthur Robertson 114

Cryptica Social Media Analysis Application NEA

asyn
m

cio.get_event_loop().run_until_complete(main()) # run the
ain function in the event loop

server/sentiment/train.py

This file is responsible for creating the sentiment analysis model used by the application. This

will be ran once on Google Collab, and will produce a model that can be downloaded for use

by the APl server.

impo
from
from
impo
impo
impo
impo
from
from
from
from
from
from
dm

def

def

rt re
gensim.utils import simple_preprocess
sklearn.model_selection import train_test_split
rt tensorflow as tf
rt keras
rt numpy as np
rt pandas as pd
keras.models import Sequential
keras 1import layers
keras.preprocessing.text import Tokenizer
keras.preprocessing.sequence import pad_sequences
keras.callbacks [import ModelCheckpoint
nltk.tokenize.treebank import TreebankWordDetokenizer
ports

create_dataset(path): # function to load the data and creata

dataframe with relevent columns

dataset = pd.read_csv(path) # load the data into a pandas
dataframe

dataset dataset.dropna() # drop rows with missing values

dataset dataset[['selected_text', 'sentiment']] # select
the relevant columns

return dataset # function to create the tokenizer

create_labels(dataset): # function to create the labels

labels = np.array(dataset['sentiment']) # create a numpy
array of the labels from the sentiment column in the
dataframe

temp = [] # temporary variable

for i in range(len(labels)): # loop through the labels

if labels[i] == 'neutral': # if the label is neutral
temp.append(0) # append a 0
if labels[i] == 'negative': # if the label is negative

temp.append(l) # append a 1

Arthur Robertson 115

Cryptica Social Media Analysis Application NEA

30
31
32
33

34
35
36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51
52
53
54
55

56
57
58
59

def

def

def

def

if labels[i] == 'positive': # if the label is positive
temp.append(2) # append a 2
temp = np.array(temp) # convert the list to a numpy array
labels = tf.keras.utils.to_categorical(temp, 3, dtype="
float32") # convert the labels to categorical data with
keras utils
return labels # return the labels

clean(data): # function to remove unnecessary characters

from the text using Regex

data = data.apply(lambda x: re.sub(r'http\S+', '', x)) #
removes all urls

data = data.apply(lambda x: re.sub(r'#\S+', '', x)) # remove
hashtags

data = data.apply(lambda x: re.sub(r'@\S+', '', x)) #
removes @mentions

data = data.apply(lambda x: re.sub(r'[M\w\s]', '', x)) #
remove punctuation

data = data.apply(lambda x: re.sub(r'\s+', ' ', x)) # remove
multiple spaces

data = data.apply(lambda x: re.sub(r"\'", "" x)) # removes
single quotes

return data

data_to_words(dataset): # to return a list of lists of words

sentences_temp = dataset['selected_text'] # get the selected
text column

temp = clean(sentences_temp) # clean the text using the
clean function

temp = temp.values.tolist() # convert the dataframe to a
list

for i in temp: # loop through the list
yield(simple_preprocess(str(i), deacc=True)) # return a

list of lists of words

form_sentences(data_words): # function to form the sentences
temp = [] # temporary variable
for i in range(len(data_words)): # loop through the data
temp.append(TreebankWordDetokenizer () .detokenize(
data_words[i])) # append the detokenized text to the
list
return np.array(temp) # return the list as a numpy array

create_tokenizer(data): # function to create the tokenizer
tokenizer = Tokenizer(num_words=5000) # create a tokenizer

Arthur Robertson 116

Cryptica Social Media Analysis Application NEA

60
61
62
63

64

65
66
67
68
69
70

71
72
73
74
75
76
77
78
79

80

81

82
83

84

85
86
87
88

with 5000 words
tokenizer.fit_on_texts(data) # fit the tokenizer on the data
return tokenizer # return the tokenizer

def create_sequences(tokenizer, data): # function to create the
sequences
return tokenizer.texts_to_sequences(data) # return the
sequences

def create_tweets(sequence): # function to create the tweets
return pad_sequences(sequence, maxlen=200)

class LSTM(Sequential): # class to create the LSTM model
def __init__(self, max_words, max_len, tokenizer): #
initialise the model
self.max_words = max_words # set the max words
self.max_len = max_len # set the max length
self.tokenizer = tokenizer # set the tokenizer
super().__init__() # call the parent class
self.add(layers.Embedding(self.max_words, 40,
input_length=self.max_len)) # add an embedding layer
self.add(layers.Bidirectional(layers.LSTM(20,dropout
=0.6))) # add a bidirectional LSTM layer
self.add(layers.Dense(3,activation='softmax')) # add a
dense layer
self.compile(optimizer="'rmsprop',loss="'
categorical_crossentropy', metrics=['accuracy']) #
compile the model

def create_checkpoint(self): # function to create the
checkpoint
self.checkpoint = ModelCheckpoint("model.hdf5", monitor=
'val_accuracy', verbose=1,save_best_only=True, mode='
auto', period=1,save_weights_only=False) # create a
checkpoint

def train(self, trainx, trainy, epochs=70): # function to
train the model
return self.fit(trainx, trainy, epochs=epochs,
validation_data=(testx, testy),callbacks=[self.
checkpoint]) # train the model

def load_model(self, path): # function to load the model
keras.models.load_model(path) # load the model

Arthur Robertson 117

Cryptica Social Media Analysis Application NEA

def evaluate_self(self, testx, testy): # function to
evaluate the model
return self.evaluate(testx, testy, verbose=2) # evaluate
the model

def predict_sentiment(self, text): # function to predict the
sentiment
sequence = self.tokenizer.texts_to_sequences([text]) #
create the sequence
temp = pad_sequences(sequence, maxlen=self.max_len) #
pad the sequence
return self.predict(temp) # predict the sentiment

dataset = create_dataset('dataset.csv') #

data_words = list(data_to_words(dataset) # create a list of
lists of words

labels = create_labels(dataset) # create the labels

data = form_sentences(data_words) # form the sentences

tokenizer = create_tokenizer(data) # create the tokenizer

sequences = create_sequences(tokenizer, data) # create the
sequences

tweets = create_tweets(sequences) # create the tweets

trainx, testx, trainy, testy = train_test_split(tweets, labels,
random_state=1) # split the data into training and testing
sets

model = LSTM(max_words=5000, max_len=200, tokenizer=tokenizer) #
create the model
model.create_checkpoint() # create the checkpoint
model.train(trainx, trainy) # train the model
loss, accuracy = model.evaluate_self(testx, testy) # evaluate
the model

client/pages/account/index.js

This file is the account homepage. Once users are logged in they will be directed here.

import useSWR from 'swr';

import Auth from '../../services/auth';

import WelcomeBanner from '../../components/account/welcome';
import { useRouter } from 'next/router';

import Loading from '../../components/loading';

import Comments from '../../components/comments';

Arthur Robertson 118

Cryptica Social Media Analysis Application NEA

7

9

10

11

12

13
14
15
16

17
18
19

20
21

22
23
24

25
26
27
28

29
30
31
32
33

34
35

8 function Dashboard() {

const router = useRouter(); // this creates an instance of the
router, which allows manipulation of the url
const auth = new Auth(); // this creates an instance of the
auth service
const { data, loading, error } = useSWR(['/users/me', true],
auth.fetcher); // this fetches the user data from the api,
with the fetcher function
if (error || loading) { // if there is an error or the data is
loading, redirect to the login page and display the
loading component
router.push('/login'); // redirect to the login page
return <Loading />; // display the loading component
}
if (data && data.first_name) { // if there is data and it
contains a first name, display the welcome banner

return (
<>
<WelcomeBanner linel={'Welcome back, ' + data.first_name
+ ' ' + data.last_name} /> // display the welcome
banner

<p className="">Email: {data.email}</p> // display the
user's email
<button // button to logout the user
onClick={() => { // on click, logout the user
auth.deleteToken(); // delete the authentication
token from local storage
router.reload(); // reload the page
1}
type="button"
className="mt-5 bg-complementary-800 text-white
rounded px-2 py-1 transition duration-200 ease
select-none hover:bg-complementary-900 focus:
outline-none focus:shadow-outline"

Logout
</button>
<div className="mt-8">
{data.comments && (// if the user has comments,
display the comments
<>
<h3 className="text-2x1 font-semibold">Your
Comments</h3>

Arthur Robertson 119

Cryptica Social Media Analysis Application NEA

<Comments comments={data.comments} /> // display
the comments
</>
)}
</div>
</>

)5
} else {

return <Loading />;
}

}

export default Dashboard;

CRYPTICA NEWS TRENDS COINS ANALYSIS

DOGECOIN$0.149429 TERRA-LUNA $5593 POLKADOT $19.69 UNISWAP §1097 ~ CARDANO $1092 ALGORANDS0945848 LITECOIN $120.45 BITCOIN $43965 ETHEREUMS$S3098.93 CHAINLINK $16.89
A~ 1.9% ~ 3.3% A 4.9% A 3% A 41% A 4.8% A 3% A 3.1% A 5% A 6.3%

Welcome back, Arthur Robertson. .

Zmail: a@arthurr.co.uk

CRYPTICA

Copyright @ 2021

Figure 25: Screenshot of the accounts page

Arthur Robertson 120

Cryptica Social Media Analysis Application NEA

client/pages/tweet-analysis/index.js

This page is used for analysing specific tweets from a user. By default, it has an input field for
the user to enter a twitter handle, and a specified cryptocoin. Then after submitting a handle,
it displays a list of that users tweets that mentions the selected cryptocurrency. The user is
then free to click on any of the tweets on the side which will then bring up a graph showing
the price of the cryptocurrency during the tweet.

import Auth from '../../services/auth';

import { useEffect, useState } from 'react';

import Loading from '../../components/loading';
import OHCL from '../../components/analysis/ohcl';
import useUser from '../../services/user';

import Tweet from '../../components/analysis/tweet';

export default function Analysis() {
const auth = new Auth(); // this creates an instance of the
auth service
const [data, setData] = useState(); // this creates a state
variable for the data
const [price, setPrice] = useState(); // this creates a state
variable for the price
const [index, setIndex] = useState(0); // this creates a state
variable for the -index
const [prevIndex, setPrevIndex] = useState(); // this creates
a state variable for the previous index with default value
0
const [loading, setLoading] = useState(false); // this creates
a state variable for the loading state
const [coin, setCoin] = useState(); // this creates a state
variable for the coin

function convertDate(date) { // this function converts the
date to UNIX timestamp
const dateArray = date.split(' '); // split the date into an
array
const dateString = dateArray[0];
const timeString dateArray[1];
const dateArray2 dateString.split('-'); //
const timeArray = timeString.split(':"');
const year = parselnt(dateArray2[0]);
const month = parselnt(dateArray2[1]);
const day = parselnt(dateArray2[2]);

Arthur Robertson 121

Cryptica Social Media Analysis Application

NEA

26
27
28
29

30
31
32
33

34
35

36

37
38

39
40
41
42

43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60

const hour = parselInt(timeArray[0]);

const minute = parselnt(timeArray[1]);

const second = parseInt(timeArray[2]);

const d = new Date(year, month - 1, day, hour, minute,
second); // create a new date object with the date and
time from the previous steps

return d.getTime() / 1000; // return the UNIX timestamp

}

const { user } = useUser(); // this uses the userUser hook to

get the user data

const submitForm = (form) => { // this function submits the
form

form.preventDefault(); // this disables the default form
submission behavior, which is to refresh the page upon
form submission

setlLoading(true); // set the loading state to true

setCoin(form.target.coin.value); // set the coin state to
the value of the coin dinput

setIndex(); // set the index state to 0

auth // this fetches the data from the api
.fetcher(// this fetches the data from the api

“/twitter/search?username=${form.target.twitterhandle.

value}&coin=${form.target.coin.value} , // this is
the url to fetch the data from
true
)
.then((res) => { // this is the response from the api
setData(res); // set the data state to the response
3)
.then(() => { // this is the response from the api
setLoading(false); // set the loading state to false
1)
13

const convert = (coin) => { // this function converts the coin

to ticker format
switch (coin) { // switch on the coin
case 'Bitcoin':
return 'BTCUSDT';
case 'Ethereum':
return 'ETHUSDT';
case 'Doge':
return 'DOGEUSDT';

Arthur Robertson

122

Cryptica Social Media Analysis Application NEA

61
62
63
64
65
66
67
68

69
70
71
72
73

74
75
76

7
78
7
80
81
82
83

84
85

86
87
88

89
90
91
92
93
94
95
96

case 'Litecoin':
return 'LTCUSDT';

case 'Cardano':
return 'ADAUSDT';

X
33

useEffect(() => { // this is the effect to run when the
component mounts
if (luser) { // if the user 1is not logged 1in
return; // return nothing

}

if (data && data[0] && index !== prevIndex && data[0][index]
&& data[0][index].datetime) { // if the data is not
empty and the index is not the same as the previous 1index
and the data has a datetime
setlLoading(true); // set the loading state to true
auth
.fetcher (~/crypto/${convert(coin)}/${convertDate(data
[0][index] .datetime)}) // this fetches the price
from the api
.then((res) => { // this is the response from the api
setPrice(res); // set the price state to the response
b
.then(() => {
setlLoading(false); // set the loading state to false
b;
setPrevIndex(index); // set the previous index state to
the -index
}
}, [user, data, index]); // this is the effect to run when the
component mounts

if (luser) { // if the user is not logged in
return 'You need to login to access this page!'; // return
the message

}

return (// this is the default return statement
<>
<div className="flex px-5">
<div className="h-1/2 top-0 sticky w-2/3 flex mr-6">
<div className="flex-1">
<div className="py-5 text-6x1 text-center font-

Arthur Robertson 123

Cryptica Social Media Analysis Application NEA

semibold 1lg:text-left transform">

97 ANALYSTS

98 </div>

99 <form onSubmit={submitForm} className="bg-

complementary-100 p-5 mb-6 space-x-5 flex">

100 <div className="relative inline-flex self-center

flex-initial">

101 <svg

102 className="text-white bg-primary-700 absolute

top-0 right-0 m-2 pointer-events—none p-2
rounded"

103 xmlns="http://www.w3.0rg/2000/svg"

104 width="40px"

105 height="40px"

106 viewBox="0 © 38 22"

107 version="1.1"

108 >

109 <g stroke="none" strokeWidth="1" fill="none"

fillRule="evenodd">

110 <g

111 transform="translate(-539.000000,

-199.000000)"

112 fill="#ffffff"

113 fillRule="nonzero"

114 >

115 <g

116 id="Icon-/-ArrowRight-Copy-2"

117 transform="translate(538.000000,

183.521208)"

118 >

119 <polygon

120 id="Path-Copy"

121 transform="translate(20.000000,
18.384776) rotate(135.000000)
translate(-20.000000, -18.384776) "

122 points="33 5.38477631 33 31.3847763 29
31.3847763 28.999 9.38379168 7
9.38477631 7 5.38477631"

123 />

124 </g>

125 </g>

126 </g>

127 </svg>

128 <select

129 id="coin"

Arthur Robertson 124

Cryptica Social Media Analysis Application NEA

className="text-x1 font-bold rounded border-2
border-primary-700 text-neutral-600 h-14 w
-44 pl-5 pr-10 bg-white focus:outline-none
appearance-none"

<option>Bitcoin</option>
<option>Ethereum</option>
<option>Doge</option>
<option>Litecoin</option>
<option>Cardano</option>
</select>
</div>
<input
id="twitterhandle"
type="text"
required
placeholder="elonmusk"
className="flex-auto text-x1 font-bold rounded
border-2 border-primary-700 text-neutral-600
h-14 pl-5 pr-10 bg-white focus:border-neutral
-400 focus:outline-none appearance—-none"
/>
<button
type="submit"
className="text-x1 font-bold rounded text-white
h-14 px-8 bg-primary-800 hover:bg-primary-900
focus:outline-none appearance—-none"

Submit
</button>
</form>

{!1loading && price && (// if the loading state 1s
false and the price state is not empty
<>
<div className="py-3 text-4x1l text-center 1g:
text-left font-medium transform">
{coin} at {data[0][index].datetime}
</div>
<div className="bg-neutral-100 h-96">
{price && price[29] && <OHCL data={price} />}
</div>
<div className="bg-neutral-100 p-5 my-8 h-full">
<div className="flex flex-col">
<div className="flex-1">

Arthur Robertson 125

Cryptica Social Media Analysis Application NEA

<div className="text-2x1 text-center 1lg:
text-left font-medium transform">
{coin}
</div>
<div className="text-x1 text-center lg:
text-left font-medium transform">
{data[0] [index] .datetime}
</div>
<div className="text-x1 text-center lg:
text-left font-medium transform">
{data[0] [index].tweet}
</div>
<div className="text-x1 text-center lg:
text-left font-medium transform">
Sentiment: {data[®][index].sentiment}
</div>
<div className="text-x1 text-center 1lg:
text-left font-medium transform">
{(-(price[29][1] - price[34][1]) / price
[29][1]) * 100}%
</div>
</div>
</div>
</div>
</>
)}
{loading && <Loading />}
</div>
</div>

<div className="flex-grow w-1/3">
<h2 className="pb-2 pt-8 text-4x1l leading-tight md:
text-4x1">Tweets</h2>

{data && data[@] && !data[0][0] && 'No results found'
/* if the data state is not empty and the first
index is empty, return the message */}

{data &&

data[0] &&
data[0].map((item, key) => { // this is the map
function to map the data state to the tweets
return (
<button
key={key}
className="hover:bg-complementary-100

Arthur Robertson 126

Cryptica Social Media Analysis Application NEA

appearance-none w-full text-left border
border-neutral-300 dark:border-neutral-800
px-6 py-4 my-4 transition duration-500 ease
-in-out transform hover:-translate-y-1
hover:scale-105"

onClick={() => setIndex(key)}

<Tweet user={data[l]} tweet={item} />
</button>
)
1}
</div>
</div>
</>
)5
}

CRYPTICA NEWS TRENDS COINS ANALYSIS

1688 UNISWAP $1096 TERRA-LUNA $56.03 ALGORANDS$0.947273 BITCOIN $43989 ETHEREUMS3101.17 POLKADOT $19.7 DOGECOIN$0.149431 LITECOIN $12055 CARDANO $1.091 CHAINLINK §
~ 2.8% A 3.7% ~4.7% A 3% A 5% ~ 4.8% ~ 1.8% A~ 3.1% A 4% ~ 6.3%

ANALYSIS Tweets
[ocon [| =

CRYPTICA

Copyright @ 2021 cotor T

Figure 26: The page when the user first enters it, with the input fields.

Arthur Robertson 127

Cryptica Social Media Analysis Application NEA

CRYPTICA

73 BITCOIN $43989 ETHEREUM$3101.17 POLKADOT $19.

ANALYSIS

v Bitcoin
SOE T

Doge
Litecoin
Cardano

Figure 27: Select Option allowing the choice of Cryptocurrency

Arthur Robertson 128

Cryptica Social Media Analysis Application

NEA

CRYPTICA NEWS TRENDS COINS

ANALYSIS
I Bitcoin] elonmusk l m

Bitcoin at 2021-11-20 06:20:16 UTC

50900
= T
i
ssn500
. I by ﬂ ‘Ikh g |

) T

W' i
$58.400 Iy mll I
'yl auhw

$58,300

06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45

Bitcoin

2021-11-20 06:20:16 UTC
@WSBChairman Bitcoin cures cancer
Sentiment:

0.44882051282050883%

Figure 28: Full page with tweet selected from list of side.

client/pages/coin/index.js

LITECOIN $12055 CARDANO $1.091 CHAINLINK $1688 UNISWAP §$1096 TERRA-LUNA$56.03 ALGORANDS$0.947273 BITCOIN
2 615 A 4% A 6.3% A 2.8% A~ 3.7% ~A4.7% A 3%

ANALYSIS ACCOUNT

$43989 ETHEREUM$3101.17 POLKADOT ~ $19.7 DOGECOINS0.1494;

A 5% A4 ~ 1.8°

Tweets

Elon Musk @
@elonmusk

@WSBChairman Bitcoin cures cancer
2021-11-20 06:20:16 UTC

Q 5027 115765 Q) 41,949

“ Elon Musk &

@elonmusk
@Filasophical @ShibalnuHodler Out of curiosity, |
acquired some ascii hash strings called “Bitcoin,
Ethereum & Doge”. That's it. As I've said
before, don't bet the farm on crypto! True value is
building products & providing services to your
fellow human beings, not money in any form.
2021-10-24 18:01:32 UTC

O 5461 11 6228 Q) 36,291

Elon Musk @

@elonmusk
@itsALLrisky @TeslaGong @mishaboar
@DogecoinFdn Possibly. Bitcoin was conceived at a
time of relatively low bandwidth & high latency.

If both continue to improve substantially, we will
reach a point when no second layer is needed.

This page contains a leaderboard of the top 50 coins ordered by marketcap, with data fetched

from an external API.

import TableItem from '../../components/coin/tableitem';
import { useState, useEffect } from 'react';

import axios from 'axios';

import Loading from '../../components/loading';

const Coins = () => {

const [data, setData] = useState(); // this creates a state

variable for the data

const [loading, setlLoading] = useState(true); // this creates
a state variable for the loading state

const formatNumber = (num) => { // this function formats the

number to a currency format

Arthur Robertson

129

Cryptica Social Media Analysis Application NEA

if (num >= 1000000000000) { // 1 trillion to T
return (num / 1000000000000).toFixed(1) + 'T';

} else if (num >= 1000000000) { // 1 billion to B
return (num / 1000000000).toFixed(l) + 'B';

} else if (num >= 1000000) { // 1 million to M
return (num / 1000000).toFixed(1l) + 'M';

} else if (num >= 1000) { // 1 thousand to K
return (num / 1000).toFixed(1l) + 'K';

} else { // less than 1 thousand
return num; // return the number

}

s

useEffect(() => { // this is the effect to fetch the data
setLoading(true); // set the loading state to true
axios
.get(// this fetches the data from the api
"https://api.coingecko.com/api/v3/coins/markets?
vs_currency=usd&order=market_cap_desc&per_page=50&
page=1&sparkline=false&price_change_percentage=24h'
) // this 1is the url to fetch the data from
.then((res) => setData(res.data)) // this is the response
from the api
.then(() => setlLoading(false))
.catch((err) => err);
s [
if (loading || !data) return <Loading />; // if the loading
state is true or the data state 1is undefined, return the
loading component
return (
<div className="px-10 ">
<div className="py-5 space-y-2">
<hl className="text-5x1">Coin Leaderboard</hil>
<p>
This page contains a list of the top 50 coins, ordered
by marketcap. Click a coin to view
more info.
</p>
</div>

<div className="">
<table className="w-full text-left">
<thead>
<tr className="text-neutral-400">
<th className="font-normal px-3 pt-0 pb-3 border-b border-

Arthur Robertson 130

Cryptica Social Media Analysis Application NEA
neutral-200 dark:border-neutral-800">
49 #
50 </th>
51 <th className="font-normal px-3 pt-0 pb-3 border-b border-
neutral-200 dark:border-neutral-800">
52 Coin
53 </th>
54 <th className="font-normal px-3 pt-0 pb-3 border-b border-
neutral-200 dark:border-neutral-800">
55 Price
56 </th>
57 <th className="font-normal px-3 pt-0 pb-3 border-b border-
neutral-200 dark:border-neutral-800">
58 24h Change
59 </th>
60 <th className="font-normal px-3 pt-0 pb-3 border-b border-
neutral-200 dark:border-neutral-800">
61 24h High
62 </th>
63 <th className="font-normal px-3 pt-0 pb-3 border-b border-
neutral-200 dark:border-neutral-800">
64 24h Low
65 </th>
66 <th className="font-normal px-3 pt-0 pb-3 border-b border-
neutral-200 dark:border-neutral-800">
67 Market Cap
68 </th>
69 </tr>
70 </thead>
71 {data.map((item) => (// this is the map function to loop
through the data and create the table with each of the
items in the data
72 <TablelItem // this is the table -item component. data s
passed in as props from the map function
73 key={item.market_cap_rank}
74 jd={item.id}
75 image={item.image}
76 rank={item.market_cap_rank}
7 name={item.name}
78 symbol={item.symbol.toUpperCase()}
79 price={item.current_price}
80 change={item.price_change_percentage_24h}
81 high={item.high_24h}
82 Tow={item.low_24h}
83 marketcap={formatNumber (item.market_cap)}
Arthur Robertson 131

Cryptica Social Media Analysis Application NEA

/>
))}
</table>
</div>
</div>

export default Coins;

CRYPTICA NEWS TRENDS COINS ANALYSIS

$1688 UNISWAP $1096 TERRA-LUNAS56.03 ALGORAND$0.947273 BITCOIN $43089 ETHEREUMS3101.17 POLKADOT $19.7 DOGECOINS0.149431 LITECOIN $12055 CARDANO $1.091 CHAINLINK
A 2.8% A 3.7% A 4.7% A 3% ~ 5% ~ 4.8% ~ 1.8% A 3.1% ~ 4% ~ 6.39

Coin Leaderboard

This page contains a list of the top 50 coins, ordered by marketcap. Click a coin to view more info.

1 Bitcoin $44027 +3.42 $44428 $42026 $834.08
2 4 FEthereum $3103.82 +5.08 $3135.57 $2873.29 $370.98
3 §p Tether $1.001 +0.14 $1.008 $0.998864 $78.58
4 Binance Coin $425.64 +5.83 $433.1 $307.56 $71.68
5 @ USD Coin $0.999221 -0.14% $1.016 $0.998076 $52.58
6 X XRP $0.823443 +3.32 $0.839526 $0.787155 $39.48
7 ;. Cardano $1.083 +4.47 $1.11 $1.03 $35.08
8 = Pl $101.82 +6.17 $103.57 $93.86 $32.58
9 orm $56.05 4 $56.69 $52.47 $22.38
10 Q) /valanche $89.49 +10.03 $89.73 $79.31 $21.98
1 ¢ Polkadot $19.74 +5.5 $20.05 $18.41 $21.48

Figure 29: Coin Leaderboard Page Screenshot

client/page/coin/[id].js
This page is for displaying advanced details about a specific coin. It is accessible from the
coins leaderboard page, and fetches data from an external api.

import { useRouter } from 'next/router';
import RelatedNews from '../../components/coin/relatednews';

Arthur Robertson 132

Cryptica Social Media Analysis Application NEA

import Graph from '../../components/coin/graph';
import axios from 'axios';
import { useEffect, useState } from 'react';
import Loading from '../../components/loading';
import Auth from '../../services/auth';
const Coin = () => {
const router = useRouter(); // this creates an instance of the
router service
const [data, setData] = useState(); // this creates a state
variable for the data
const [loading, setlLoading] = useState(true); // this creates
a state variable for the loading state
const [fav, setFav] = useState(false); // this creates a state
variable for the favorite state
const [time, setTime] = useState('7d'); // this creates a
state variable for the time
const [news, setNews] = useState(); // this creates a state
variable for the news
const auth = new Auth(); // this creates an instance of the
auth service

const formatNumber = (num) => { // this function formats the

number
if (num >= 10 *%x 12) {

return (num / 10 **x 12).toFixed(l) + 'T';
} else if (num >= 10 *x 9) {

return (num / 10 ** 9).toFixed(l) + 'B';
} else if (num >= 10 *x 6) {

return (num / 10 ** 6).toFixed(l) + 'M';
} else if (num >= 10 x*x 3) {

return (num / 10 ** 3).toFixed(l) + 'K';
} else {

return num;

s

const buttonClick = () => { // this is the function to change
the fav variable state to the opposite value
setFav(!fav);

s

useEffect(() => { // this is the effect to fetch the data
async function fetchNews() { // this 1is the function to
fetch the news
return await auth.poster('/news/search', { // this is the

Arthur Robertson 133

Cryptica Social Media Analysis Application NEA

url to fetch the data from
38 phrase: router.query.coin // this is the post body to
send to the api. router.query.coin is the coin name
which is passed in from the url

39 1)

40 }

41

42 setLoading(true); // set the loading state to true

43 if (!router.query.coin) { // if the coin is undefined,

redirect to the home page

44 return; // return the function

45 }

46 axios // this 1is the axios instance to fetch the data

47 .get(// this fetches the data from the api

48 “https://api.coingecko.com/api/v3/coins/${router.query.
coin}?localization=false&tickers=false&community_data
=false&developer_data=false&sparkline=false"

49) // this 1is the url to fetch the data from

50 .then((res) => setData(res.data)) // this sets the data

state variable to the data
51 .then(() => setLoading(false)) // this sets the loading
state to false
57) .catch((err) => err); // this catches any errors
53 fetchNews () .then((res) => setNews(res.data)); // this

fetches the news
54 }, [router.query.coin]); // this 1is the dependency array,
which is the coin query

55
56 if (router.isFallback || !router.query.coin || !data ||
loading) { // return loading in the following conditions
57 return <Loading />;
58 }
59 return (// return the following
60 <>
61 <div className="flex px-10">
62 <div className={news ? 'pt-10 w-full lg:w-3/4' : 'pt-10
w-full'}>
63 <div className="space-x-4">
64 {data.name}</
span>
65 <span className="text-4x1 font-medium text-neutral
-400">
66 {data.symbol.toUpperCase()}
67
68 </div>

Arthur Robertson 134

Cryptica Social Media Analysis Application NEA

<div className="flex bg-neutral-50 mt-5 font-light">
<div className="flex-auto p-5">
<h3 className="text-sm">PRICE</h3>
<h2 className="text-4x1 font-medium'">$ {data.
market_data.current_price.usd}</h2>
</div>
<div className="flex-auto p-5">
<h3 className="text-sm'">24HR PRICE CHANGE</h3>
<h2 className="text-2x1 text-green-500 font-medium
n >
{Math.round (100 * data.market_data.
price_change_percentage_24h) / 100}% {/* this
is the percent change */}
</h2>
</div>
<div className="flex-auto p-5">
<h3 className="text-sm'">MARKET CAP</h3>
<h2 className="text-2x1 font-medium">
${formatNumber (data.market_data.market_cap.usd)}
{/* this is the market cap from the APIx*/}
</h2>
</div>
<div className="flex-auto p-5">
<h3 className="text-sm">24HR MARKET CAP CHANGE</h3
>
<h2 className="text-2x1 font-medium text-green-500
n >
{Math.round(
100 * data.market_data.
market_cap_change_percentage_24h_in_currency
.usd
) / 100} {/* this is the market cap change from
the API x/}
%
</h2>
</div>

<button
onClick={buttonClick}
className="flex-none p-2 text-center text-md bg-
red-100 order-last hover:bg-red-200 w-16"

<svg viewBox="0 0 512 512">
{fav && (
<path

Arthur Robertson 135

Cryptica Social Media Analysis Application

NEA

103
104

105

106

107

108
109
110
111
112

113

114

115

116

117

118

119

120

121

fill="red"
d="M376,30c
-27.783,0-53.255,8.804-75.707,26.168c

-21.525,16.647-35.856,37.85-44.293,53.268

c-8.437-15.419-22.768-36.621-44.293-53.268C189
.255,38.804,163.783,30,136,30C58
.468,30,0,93.417,0,177.514
c0,90.854,72.943,153.015,183.369,247.118c18
.752,15.981,40.007,34.095,62.099,53.414C248
.38,480.596,252.12,482,256,482
S7.62-1.404,10.532-3.953c22
.094-19.322,43.348-37.435,62.111-53.425C439
.057,330.529,512,268.368,512,177.514
€512,93.417,453.532,30,376,302"
/>
)}
<path
d="M474.644,74.27C449
.391,45.616,414.358,29.836,376,29.836¢
-53.948,0-88.103,32.22-107.255,59.25
c-4.969,7.014-9.196,14.047-12.745,20.665C
-3.549-6.618-7.775-13.651-12.745-20.665cC
-19.152-27.03-53.307-59.25-107.255-59.25
c-38.358,0-73.391,15.781-98.645,44.435C13
.267,101.605,0,138.213,0,177.351c0
,42.603,16.633,82.228,52.345,124.7
c31.917,37.96,77.834,77.088,131.005,122.397c19
.813,16.884,40.302,34.344,62.115,53.42910
.655,0.574
c2.828,2.476,6.354,3.713,9.88,3.713s7
.052-1.238,9.88-3.71310.655-0.574c21
.813-19.085,42.302-36.544,62.118-53.431
c53.168-45.306,99.085-84.434,131.002-122.395C495
.367,259.578,512,219.954,512,177.351
C512,138.213,498.733,101.605,474.644,74.27z M309
.193,401.614c
-17.08,14.554-34.658,29.533-53.193,45.646
c-18.534-16.111-36.113-31.091-53.196-45.648C98
.745,312.939,30,254.358,30,177.351c0
-31.83,10.605-61.394,29.862-83.245
C79.34,72.007,106.379,59.836,136,59.836c41
.129,0,67.716,25.338,82.776,46.594c13
.509,19.064,20.558,38.282,22.962,45.659
€2.011,6.175,7.768,10.354,14.262,10.354c6
.494,0,12.251-4.179,14.262-10.354c2

Arthur Robertson

136

Cryptica Social Media Analysis Application NEA

.404-7.377,9.453-26.595,22.962-45.66
c15.06-21.255,41.647-46.593,82.776-46.593c29
.621,0,56.66,12.171,76.137,34.27C471
.395,115.957,482,145.521,482,177.351
C482,254.358,413.255,312.939,309.193,401.614z"
/>
</svg>
</button>
</div>
<div className="w-full bg-neutral-50 mt-8 h-96">
<Graph coin={router.query.coin} time={time} /> {/*
this is the graph component */}
</div>
{data.description.en && (
<div
className="w-full bg-neutral-50 mt-8 p-4"
dangerouslySetInnerHTML={{ __html: data.
description.en }} {/* this is the description
from the API */}
/>
)}
</div>
{news && (
<div className="pl-10 h-1/2 top-0 sticky w-1/4 hidden
lg: flex">
<RelatedNews news={news} />
</div>
)}
</div>
</>
)
15

export default Coin;

Arthur Robertson 137

Cryptica Social Media Analysis Application NEA

CRYPTICA NEWS TRENDS COINS ANALYSIS

$1096 TERRA-LUNA$56.03 ALGORANDS$0.947273 BITCOIN $43989 ETHEREUMS$3101.17 POLKADOT ~ $19.7 DOGECOIN$0.149431 LITECOIN $129.55 CARDANO $1.091 CHAINLINK ~ $16.88

3.1 A 4% A 6.3%

A 3.7% ~4.7% ~ 3 A 5% A~ 4.8% ~ 1.89 ~

Bitcoin Related Articles

PRICE 24HR PRICE CHANGE MARKET CAP 24HR MARKET CAP CHANGE
@ DeepDotWeb operator

$ 44140 3.68% $834.0B 3.06% ()

money laundering

bitcoin/usd Cathie Wood's Ark Invest

Y expects ether to soar over
7,000% and hit a $20 trillion
market cap by 2030

70,000
60,000
50,000
40,000
Gibraltar Could Launch the

World’s First Crypto Stock
Exchange

30,000

20,000

10,000
Factbox: IMF asks EI

Salvador to drop bitcoin, more
countries clamp down -
Reuters

0
16 Feb2021 28 Mar2021 7 May 2021 16Jun2021 26 Jul 2021 4 Sep 2021 140ct2021 23Nov2021 2Jan2022 11 Feb 2022

The International Monetary
Fund tells EI Salvador it
shouldn’t use Bitcoin as legal
tender

transaction and production of the Bitcoin currency. It was created by an anonymous individual/group under the name, Satoshi Nakamoto. The
source code is available publicly as an open source project, anybody can look at it and be part of the developmental process. Bitcoin is changing
the way we see money as we speak. The idea was to produce a means of exchange, independent of any central authority, that could be
transferred electronically in a secure, verifiable and immutable way. It is a decentralized peer-to-peer internet currency making mobile payment
easy, very low transaction fees, protects your identity, and it works anywhere all the time with no central authority and banks. Bitcoin is designed
to have only 21 million BTC ever created, thus making it a deflationary currency. Bitcoin uses the SHA-256 hashing algorithm with an average
transaction confirmation time of 10 minutes. Miners today are mining Bitcoin using ASIC chip dedicated to only mining Bitcoin, and the hash rate
has shot up to peta hashes. Being the first successful online cryptography currency, Bitcoin has inspired other alternative currencies such as

Bitcoin is the first successful internet money based on peer-to-peer technology; whereby no central bank or authority is involved in the n

Figure 30: Bitcoin’s page

client/page/account-analysis/index.js

This file is for analysising users twitters account on a general level. It has a field for inputting a
user’s twitter handle and for specifying a quantity of tweets to analyse. It produces several
graphs and charts.

import useUser from '../../services/user';

import Auth from '../../services/auth';

import { useState } from 'react';

import Heatmap from '../../components/admin/heatmap';
import Piechart from '../../components/admin/piechart"';
import Profile from '../../components/admin/profile';

const Admin = () => {
const { user, loading } = useUser(); // this uses the userUser
hook to get the user data
const auth = new Auth(); // this creates an instance of the

Arthur Robertson 138

Cryptica Social Media Analysis Application NEA

11

12

13
14

15
16
17
18

g

20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35

36
37

38

39
40

41
42
43

auth service

const [data, setData] = useState(); // this creates a state
variable for the data

const [load, setloading] = useState(false); // this creates a
state variable for the loading state

if (luser && !loading) { // if the user is not logged in and
the loading state 1is false
return <div>Unauthorised</div>;

}

const submitForm = (form) => { // this function submits the
form
form.preventDefault(); // this disables the default form
submission behavior, which is to refresh the page upon
form submission
setlLoading(true); // set the loading state to true
auth // this fetches the data from the api
. fetcher(
“/twitter/search?username=${form.target.handle.value}&
Limit=${form.target.count.value}",
true // this is the url to fetch the data from
)
.then((res) => {
setData(res);
3
.then(() => {
setLoading(false);
1)
s

return (
<div className={'bg-neutral-50 ' + (load ? 'cursor-wait' : '
")3>
<div className="grid justify-items-center py-5">
<form onSubmit={submitForm} className='"bg-complementary
-100 p-5 space-x-5 flex w-3/4 ">
<div className="relative inline-flex self-center flex-
initial">
<svg
className="text-white bg-primary-700 absolute top
-0 right-0 m-2 pointer-events—-none p-2 rounded"
xmlns="http://www.w3.0rg/2000/svg"
width="40px"
height="40px"

Arthur Robertson 139

Cryptica Social Media Analysis Application NEA

viewBox="0 0 38 22"
version="1,1"

<g stroke="none" strokeWidth="1" fill="none"
fillRule="evenodd">
<g
transform="translate(-539.000000, -199.000000)
fill="#ffffff"
fillRule="nonzero"

<g id="Icon-/-ArrowRight-Copy-2" transform="
translate(538.000000, 183.521208)">
<polygon
id="Path-Copy"
transform="translate(20.000000, 18.384776)
rotate(135.000000) translate
(-20.000000, -18.384776) "
points="33 5.38477631 33 31.3847763 29
31.3847763 28.999 9.38379168 7
9.38477631 7 5.38477631"
/>
</g>
</g>
</g>
</svg>
<select
id="count"
className="text-x1 font-bold rounded border-2
border-primary-700 text-neutral-600 h-14 w-52
pl-5 pr-10 bg-white focus:outline-none
appearance-none"

<option value="100">100 Tweets</option>
<option value="250">250 Tweets</option>
<option value="500">500 Tweets</option>
<option value="1000">1000 Tweets</option>
<option value="2000">2000 Tweets</option>
</select>
</div>
<input
id="handle"
type="text"
required
placeholder="elonmusk"

Arthur Robertson 140

Cryptica Social Media Analysis Application NEA

className="flex-auto text-x1 font-bold rounded
border-2 border-primary-700 text-neutral-600 h-14
pl-5 pr-10 bg-white focus:border-neutral-400
focus:outline-none appearance-none"
/>
<button
type="submit"
disabled={load}
className={
'"text-x1 font-bold rounded text-white h-14 px-8 bg
-primary-800 hover:bg-primary-900 focus:outline
-none appearance-none' +

(load ? ' opacity-50 cursor-not-allowed' : ''")
+
>
Submit
</button>
</form>
</div>
{data && data[0] && (
<>

<div className="flex flex-wrap overfull-hidden'">
<div className="bg-green-50 w-full lg:w-2/3">
<Profile data={data} />
</div>
<div className="w-full lg:w-1/3">
<div className="bg-red-50 pt-5 pb-2 px-2">
<hl className="text-center text-2x1 font-bold
text-neutral-800">Devices Used</hl>
</div>
<div className="bg-red-50 h-72 px-2">
<Piechart
data={data[0].map((tweet) => {
return tweet.source; // this maps the data
to the source property
1}
/>
</div>
</div>
</div>
<div className="bg-complementary-50 py-5">
<hl className="text-center text-2x1 font-bold text-
neutral-800">
Tweets at times across the week (GMT)
</h1>

Arthur Robertson 141

Cryptica Social Media Analysis Application NEA

</div>
<div className="bg-complementary-50 h-96">
<Heatmap
data={datal[0] .map((tweet) => {
return tweet.datetime; // this maps the data to
the datetime property
)3
/>
</div>
</>
)}
</div>
)3
}s

export default Admin;

CRYPTICA NEWS TRENDS COINS ANALYSIS

KADOT $19.81 TERRA-LUNA $56.16 UNISWAP $11 CARDANO $1.096 BITCOIN $44150 DOGECOIN$0.149983 ALGORAND$0.951622 LITECOIN $13004 CHAINLINK $1694 ETHEREUMS$311472 P
5.9% A~ 4.2% ~ 3.6% A 4.8% ~ 3.6% A 2.7% A 5.6% A 3.8% A T% ~ 6%

CRYPTICA

Copyright @ 2021 cotor T

Figure 31: The input field

Arthur Robertson 142

Cryptica Social Media Analysis Application

NEA

CRYPTICA NEWS TRENDS COINS ANALYSIS

pot $19.81 TERRA-LUNA $56.16 UNISWAP $11 CARDANO §1.096 BITCOIN $44159 DOGECOIN$0.149983 ALGORANDS$0.951622 LITECOIN $130.04
A ~ A ~ A A A

ACCOUNT

CHAINLINK ~ $16.94 ETHEREUM$3114.72 POLKA

A

A~ A

250 Tweets billgates

Devices Used

@ Tuitter for iPhone Twitter Media Studio Twitter Web App
GatesNotes
oF Bl GATES
Bill Gates
@BillGates
Sharing things I'm learning through my foundation work and other interests.
Q Seattle, WA hiips:/t.co/luQ5mONOmYj # Joined June 2009
57M Following 349 Following
Tweets at times across the week (GMT)
Monday 1 1 2 2 2 1 1
Tuesday 3 1 1 1 1 5 1 4 2 1
Wednesday 1 3 1 1 4 3 4 3 2 5
Thursday 1 5 3 3 3 1 4 2 5
Friday 1 1 3 1 3 6 2 6 7
Saturday 3 2 1 1 2 7 4 3 4 1 1 . 1
Sunday 1 1 1 1 4 1 2 2
12am fam | 2am 3am 4am Sam 6am 7am 8am 9am 10am flam 12m ipm 2m 3pm 4pm Spm 6m 7pm 8pm Spm 10pm 1ipm
0 18

CRYPTICA

Figure 32: The analysis page after Bill Gate’s Twitter account is supplied in the input field

client/pages/login/index.js

This page allows the user to login to the application

import { Field, Form, Formik } from 'formik';
import Link from 'next/link';

import { useState } from 'react';

import Auth from '../../services/auth';
import useUser from '../../services/user';
import { useRouter } from 'next/router';

Arthur Robertson

143

Cryptica Social Media Analysis Application NEA

7

9

10

11

12

13

14

15

16
17
18

19

20

21

22

23

24

25
26

27
28

29
30
31
32

33

34

8 function Login(props) {

const [reply, setReply] = useState(); // this creates a state
variable for the reply from the API
const [button, setButton] = useState('Log In'); // this
creates a state variable for the button text
const { user, loading, error } = useUser(); // this sets user,
loading, and error from the user service
const Router = useRouter(); // this creates an instance of the
router service
const auth = new Auth(); // this creates an instance of the
auth service
if (user) { // if the user is logged in already
Router.push('/' + (Router.query.redirect || 'account')); //
redirect to the account page, or the page that was
requested before the login page
return <></>; // return nothing
}
if (error && error.response && error.response.status === 401)
{ // if there dis an error and it is a 401 forbidden,
display the error message
auth.deleteToken(); // delete the authentication token from
local storage as it must be 1invalid
+
return (// display the login form
<div className="container mx-auto p-4 mt-12 bg-white flex
flex-col +items-center justify-center'">
<div className="w-10/12 sm:w-8/12 md:w-6/12 1lg:w-5/12 xLl:w
-4/12 mb-4">
<hl className="text-4x1 font-semibold ">Welcome back.</
hi>
</div>
<div className="w-10/12 sm:w-8/12 md:w-6/12 1lg:w-5/12 xl:w
-4/12 mb-6">
<Formik
initialValues={{ // this sets the initial values for
the form
email: '',
password: '
1}
onSubmit={(values, { setSubmitting }) => { // this
sets the on submit function for the form
setButton('Logging 1in...'); // set the button text
to logging 1n
auth // call the auth service

Arthur Robertson 144

Cryptica Social Media Analysis Application NEA

35

36

37

38
39
40

41

42

43

44
45

46

47

48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

.poster('/auth/login', { // post the login data to
the api
email: values.email, // set the email from the
form
password: values.password // set the password
from the form
3
.then((response) => {
if (response.status == 200) { // if the response
is a 200 ok
setSubmitting(false); // set the form to not
be submitting
auth.saveToken(response.data.access_token); //
save the authentication token to local
storage
Router.push('/' + (Router.query.redirect || '
account')); // redirect to the account page
, or the page that was requested before the

login page
} else { // if the response 1is not a 200 ok
setReply('Error: ' + response.response.data.
detail); // set the reply to the error
message
setButton('Log In'); // set the button text to
log 1in

setSubmitting(false); // set the form to not
be submitting

h;
1)
1}
render={() => (// this renders the form
<Form>
<Field
id="email"

name="email"

placeholder="Email"

type="email"

className="mb-4 p-2 appearance-none block w-full
bg-neutral-200 placeholder—-neutral-900
rounded border focus:border-teal-500"

/>

<Field
id="password"
name="password"

Arthur Robertson

145

Cryptica Social Media Analysis Application NEA

placeholder="Password"

type="password"

className="mb-4 p-2 appearance-none block w-full
bg-neutral-200 placeholder-neutral-900
rounded border focus:border-teal-500"

/>

<div className="flex items-center">
<div className="w-1/2 flex items-center'>
<a className="text-sm font-semibold text-
center'">
<p>New to Cryptica? </p>
<p className="hover:underline text-
complementary-400">
<Link href="/register" className="hover:
underline">
<p className="hover:underline text-
complementary-700">Create an account

</p>
</Link>
</p>

</div>
<button

className="ml-auto w-1/2 bg-neutral-800 text-
white p-2 rounded font-semibold hover:bg-
neutral-900"
type="submit"
>
{button}
</button>
</div>
</Form>
)}
/>
</div>
{reply && (
<div className="flex justify-center w-10/12 sm:w-8/12 md
tw—6/12 lg:w-5/12 xl:w-4/12 bg-red-600 py-3 rounded">
<p className="font-semibold text-white text-sm">{reply
F</p>
</div>
)}
</div>

)5

Arthur Robertson 146

Cryptica Social Media Analysis Application NEA

export default Login;

CRYPTICA NEWS TRENDS COINS ANALYSIS

INK $1693 DOGECOIN$0.150167 BITCOIN $44153 TERRA-LUNA $5626 ETHEREUMS3118.47 ~ CARDANO $1.095 ALGORANDS0.951399 UNISWAP $11 LITECOIN $13008 POLKADOT $19.83 CHAI
2% A 3.1% ~ 3.8% ~ 4.3% ~ 6.2% ~ 4.9% ~ 5.9% ~ 3.9% ~4.2% A 6%

Welcome back.

Email

Password

New to Cryptica?
Log In
Create an account °9

CRYPTICA

Copyright @ 2021 cotor T

Figure 33: The Login Page

client/page/register/index.js

This page allows the user to register for an account

import { Field, Form, Formik } from 'formik';
import * as React from 'react';

import Router from 'next/router';

import { useState } from 'react';

import Link from 'next/link';

import Auth from '../../services/auth';
import useUser from '../../services/user';

Arthur Robertson 147

Cryptica Social Media Analysis Application NEA

10

11

12

13

14
15
16
17
18

19

20
21
22
23

24

25

26
27

28

29
30
31
32
33
34
35

36
37
38

39

9 function Register() {

const [reply, setReply] = useState(); // this creates a state
variable for the reply from the API
const [button, setButton] = useState('Register'); // this
creates a state variable for the button text
const { user, loading, error } = useUser(); // this sets user,
loading, and error from the user service
const auth = new Auth(); // this creates an instance of the
auth service
if (user) { // if the user 1is logged 1in
Router.push('/account'); // redirect to the account page
return <></>;
+
if (error && error.response && error.response.status === 401)
{ // if there dis an error and it is a 401 forbidden,
display the error message
auth.deleteToken(); // delete the authentication token from
local storage as it must be invalid

}

return (
<main className="container mx-auto p-4 mt-12 bg-white flex
flex-col 1items-center justify-center'">
<div className="w-10/12 sm:w-8/12 md:w-6/12 1lg:w-5/12 xl:w
-4/12 mb-4">
<hl className="text-4x1 font-semibold ">Welcome to
Cryptica.</h1>
</div>
<div className="w-10/12 sm:w-8/12 md:w-6/12 1lg:w-5/12 xLl:w
-4/12 mb-6">
<Formik // this creates a form with initial values and
on submit function
initialValues={{
first_name: '',
last_name: '',
email: '',
password: ''
1}
onSubmit={(values, { setSubmitting }) => { // this
sets the on submit function for the form
setButton('Registering..."');
auth
.poster('/auth/register', { // post the login data
to the api
first_name: values.first_name,

Arthur Robertson 148

Cryptica Social Media Analysis Application NEA

40 last_name: values.last_name,

41 email: values.email,

42 password: values.password

43 3

44 .then((response) => { //

45 if (response.status == 200) { // if the response

is a 200 OK

46 setSubmitting(false); // stop the form from

submitting

47 auth.saveToken(response.data.access_token); //

save the authentication token returned to
local storage

48 Router.push('/account'); // redirect to the

account page

49 } else { // if the response is not a 200 OK

50 setReply('Error: ' + response.response.data.

detail); // set the reply to the error
message

51 setButton('Register'); // set the button text

back to register

52 setSubmitting(false); // stop the form from

submitting

53 }

54 19K

55 1}

56 render={() => (// this renders the form

57 <Form>

58 <div>

59 <div className="flex">

60 <div className="w-1/2">

61 <Field

62 id="f1irst_name"

63 name="first_name"

64 placeholder="First Name"

65 className="mb-4 py-2 pl-2 appearance—-none
block bg-neutral-200 placeholder-
neutral-900 rounded border focus:border
-teal-500"

66 />

67 </div>

68 <div className="w-1/2">

69 <Field

70 id="1last_name"

71 name="1last_name"

72 placeholder="Last Name"

Arthur Robertson 149

Cryptica Social Media Analysis Application NEA

className="mb-4 py-2 pl-2 appearance-none
block bg-neutral-200 placeholder-
neutral-900 rounded border focus:border
-teal-500"
/>
</div>
</div>
</div>
<Field
id="email"
name="email"
placeholder="Email"
type="email"
className="mb-4 p-2 appearance-none block w-full
bg-neutral-200 placeholder-neutral-900
rounded border focus:border-teal-500"

/>

<Field

id="password"

name="password"

placeholder="Password"

type="password"

className="mb-4 p-2 appearance-none block w-full
bg-neutral-200 placeholder—-neutral-900
rounded border focus:border-teal-500"

/>

<div className="flex items-center">
<div className="w-1/2 flex items-center">
<a className="text-sm font-semibold text-
center'">
<p>Already got an account? </p>
<p className="hover:underline text-
complementary-400">
<Link href="/login" className="hover:
underline'">
<p className="hover:underline text-
complementary-700">S1ign in here</p>
</Link>
</p>

</div>
<button
className="ml-auto w-1/2 bg-neutral-800 text-

Arthur Robertson

150

Cryptica Social Media Analysis Application NEA

white p-2 rounded font-semibold hover:bg-
neutral-900"
type="submit"
>
{button}
</button>
</div>
</Form>
)}
/>
</div>
{reply && (
<div className="flex justify-center w-10/12 sm:w-8/12 md
tw-6/12 1lg:w-5/12 xl:w-4/12 bg-red-600 py-3 rounded">
<p className="font-semibold text-white text-sm">{reply
3</p>
</div>
)}
<div className="flex justify-center w-10/12 sm:w-8/12 md:w
-6/12 lg:w-5/12 xl:w-4/12 py-3 rounded">
<p className="text-sm">
<p className="text-md text-bold">Password Requirements
</p>
<ul className="1list-disc text-sm list-inside">
At least 8 characters</1li>
At least one number</1i>
At least one uppercase letter
At least one special character</1li>

</p>
</div>
</main>
)3
}

export default Register;

Arthur Robertson 151

Cryptica Social Media Analysis Application NEA

CRYPTICA NEWS TRENDS COINS ANALYSIS

1847 CARDANO $1.095 ALGORANDS0.951399 UNISWAP $11 LITECOIN $130.08 POLKADOT $19.83 CHAINLINK $1693 DOGECOINS0.150167 ~ BITCOIN $44153 TERRALUNA $5626 ETHEREUM
~ 4.9% A 5.9% A 3.9% ~4.2% A 6% A T7.2% ~3.1% ~ 3.8% A 4.3% A 6.2%

Welcome to Cryptica.

First Name Last Name
Email

Password

Already got t? .
- y‘go ,a" -
Sign in here

Password Requirements

* Atleast 8 characters

* Atleast one number

« Atleast one uppercase letter
« At least one special character

CRYPTICA

Copyright @ 2021 cotor T

Figure 34: The register page

client/pages/news/index.js

This page shows a list of news articles from the API.

import Sidebar from '../../components/layout/sidebar';
import Feature from '../../components/news/feature';
import Post from '../../components/news/post';
import { useEffect, useState } from 'react';
import Auth from '../../services/auth';
import Loading from '../../components/loading';
export default function News() {
const auth = new Auth(); // creates an instance of the Auth
class
const [data, setData] = useState(); // creates a state
variable for the data
useEffect(() => { // useEffect hook for fetching data when the

Arthur Robertson 152

Cryptica Social Media Analysis Application NEA

11
12
13
14
15
16
17

18

19
20

21

22
23

24

25

26

27
28
29

30
31

32
33
34
35
36
37

38
39
40
41
42
43

component mounts

auth // calls the auth 1dinstance
.fetcher('/news/') // fetches the data from the API
.then((res) => setData(res)) // sets the data to the state
.catch(); // catches any errors

3, [

function formatDate(date) { // function to format the date
into a readable format
const dateObj = new Date(date); // creates a new date object
from the date string
const now = new Date(); // creates a new date object for now
const diff = now - dateObj; // calculates the difference
between the two dates
const diffDays = Math.floor(diff / (1000 * 60 * 60 * 24));
// calculates the difference in days
if (diffDays < 1) { // if the difference is less than 1 day
const diffHours = Math.floor(diff / (1000 *x 60 *x 60)); //
calculates the difference in hours
if (diffHours < 1) { // if the difference is less than 1
hour
const diffMinutes = Math.floor(diff / (1000 * 60)); //
calculates the difference in minutes
if (diffMinutes < 1) { // if the difference is less than
1 minute
return 'Just now'; // returns 'Just now'
} else { // if the difference is more than 1 minute
return "“${diffMinutes} minutes ago ; // returns the
difference in minutes
h
return "~ ${diffHours} hours ago; // returns the difference
in hours
}
if (diffDays === 1) { // if the difference 1is 1 day
return 'Yesterday'; // returns 'Yesterday'
}
if (diffDays < 7) { // if the difference is less than 7 days
return "~ ${diffDays} days ago ; // returns the difference
in days
} else { // if the difference is more than 7 days
const monthNames = [// creates an array of month names
'January’',
'February',
'"March',
"April',

Arthur Robertson 153

Cryptica Social Media Analysis Application NEA

lMayl’
'June',
'July’',
'August’',
'September’',
'October’',
"November',
'December’
13
const day = dateObj.getDate(); // gets the day from the
date object
const monthIndex = dateObj.getMonth(); // gets the month
from the date object
const year = dateObj.getFullYear(); // gets the year from
the date object
return "~ ${monthNames[monthIndex]} ${day}, ${year} ; //
returns the month and day
}
}

return (
<div className="flex bg-gray-50'">
<div className="h-1/2 top-32 sticky w-64 hidden 1lg:flex">
<div className="flex-1 px-5">
<Sidebar>
<div className="py-5 text-6x1 text-center 1lg:text-
left font-medium transform">NEWS</div>
All our news is gathered from the dinternet via an
external party, so we can{"'"}t
guarantee the accuracy of the news.

For more information, visit our FAQs.
</Sidebar>
</div>
</div>

<div className="flex-grow ">
{data ? (// if the data is set, then show the feature
with the first data +item
<Feature
id={data[0].id}
title={data[0].title}
author={data[0].publication}
date={formatDate(data[0].date)} // formats the date
image={data[@].imageurl || 'null'} // if the
imageurl is set, then use 1it, otherwise use null

Arthur Robertson 154

Cryptica Social Media Analysis Application NEA

81
82
83
84
85
86

87

88
89
90

91

Opk
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117 }

)3

/>
) ¢ (
<Feature />

)}

<div className="sm:px-2 md:px-20 border-dotted lg:border
-1 xl:border-r border-neutral-600">
<h2 className="py-8 text-2x1 font-extrabold leading-
tight border-b border-dotted border-neutral-600 md:
text-4x1">
All Articles
</h2>
{data ? (// if the data is set, then show the posts
with the rest of the data +items
data.map((post) => (// maps the data items to the
post component with the data
<Post
key={post.id}
title={post.title}
summary={post.description}
date={formatDate(post.date)} // formats the date
author={post.publication}
id={post.id}
image={post.imageurl}

/>
)
) ¢ (// if the data is not set, then show a loading
screen
<Post
key="1"
title="Loading..."
summary="Loading..."
date="Loading..."
author="Loading..."
-id=l|l|l
-image:""
/>
)}
</div>
</div>

</div>

Arthur Robertson 155

Cryptica Social Media Analysis Application NEA

CRYPTICA NEWS TRENDS COINS ANALYSIS

RRA-LUNA $56.26 ETHEREUM$3118.47 CARDANO $1.095 ALGORAND$0.951399 UNISWAP $n LITECOIN $130.08 POLKADOT $19.83 CHAINLINK ~ $16.93 DOGECOIN$0.150167 BITCOIN $44153
A 5 QO A 3.9% A 4 90 A~ 6% N / A CA A 3.8%

~ 6.2% ~ 4.9%

NEWS

All our news is gathered from
the internet via an external
party, so we can't guarantee
the accuracy of the news.

For more information, visit our
FAQs. Slashdot.org

Wikimedia Foundation Urged to Stop Accepting Cryptocurrency Donations

All Articles

Wikimedia Foundation Urged to Stop Accepting Cryptocurrency
Donations
Slashdot.org January 31, 2022

Software engineer Molly White has been a Wikipedia editor since 2006 (and also served several terms on the
site's Arbitration Committee). White is now a Wikipedia administrator and functionary — and just published an
Opinion piece opposing the continued accep...

DeepDotWeb operator sentenced to eight years for money laundering
The Verge January 27, 2022

The operator of DeepDotWeb, a site that indexed dark net marketplaces accessible through Tor browser, was
sentenced to eiaht vears after pleadina quiltv to monev launderina usina Bitcoin.

Figure 35: News index page, with the featured article at the top

client/pages/news/[id].js

This page shows details about a specific article, specified by the ID in the url. It also contains
a comment box for users to write comments.

import { useRouter } from 'next/router';
import Content from '../../components/news/content';
import Loading from '../../components/loading';
import Auth from '../../services/auth';
import Comments from '../../components/news/comments';
import { useState, useEffect } from 'react';
const Post = (props) => {
const auth = new Auth(); // creates an instance of the Auth
class
const router = useRouter(); // creates an instance of the
router

Arthur Robertson 156

Cryptica Social Media Analysis Application NEA

10

11

12

13
14
15
16
17

18
g
20
21
22

23
24
25
26
27
28
28
30

31

32
33
34
35

36
37
38
39

40

41
42
43
44

const { id } = router.query; // gets the id of the news
article from the url
const [data, setData] = useState(null); // creates a state
variable for the data
useEffect(() => { // useEffect hook for fetching data when the
component mounts
(async () => {
if (!id) { // if there 1is no id
return; // returns
h
const response = await auth.fetcher (" /news/${id} , false);
// fetches the data from the API with the -id
setData(response); // sets the data to the state
O3 // calls the async function
}, [id]); // runs the useEffect hook when the id changes

if (!data || !id) { // if there dis no data or the 1id is not
set
return <Loading />; // returns the loading component
}
if (data) {
return (
<>

<div className="py-10 bg-primary-800 text-white pb-60">
<hl className="text-4x1 font-bold text-center'">{data.
title}</h1>
<h3 className="text-x1 text-center font-medium pt-2">{
data.date}</h3>
</div>

<section className="container h-96 mx-auto flex -mt-48">
<img className="mx-auto" src={data.imageurl} alt="
Image" />
</section>

<Content content={data.content} />
<div className="p-5 bg-primary-800 text-white space-y-2"
>
<h3 className="text-2x1 text-center font-light hover:
text-neutral-300">
Read the full article here..
</h3>
<h3 className="text-md text-center font-medium">
{data.author} | {data.publication}

Arthur Robertson 157

Cryptica Social Media Analysis Application NEA

</h3>
</div>
<Comments comments={data.comments} +id={id} />
</>
)3
}
};

export default Post;

Arthur Robertson 158

Cryptica Social Media Analysis Application NEA

CRYPTICA NEWS TRENDS COINS ANALYSIS

TERRA-LUNA $56.26 ETHEREUMS$3118.47 CARDANC §1.005 ALGORAND$0.951399 UNISWAP $11 LITECOIN $130.08 POLKADOT $19.83 CHAINLINK ~ $18.93 DOGECOIN$O.

~ 6.2% ~ 4.9% ~ 5.9% ~ 3.9% ~ 4.2% ~ 6% ~ o ~3.1%

Wikimedia Foundation Urged to Stop Accepting Cryptocurrency Donations
2022-01-31T03:19:00Z

Software engineer Molly White has been a Wikipedia editor since 2006
(and also served several terms on the site's Arbitration Committee). White
is now a Wikipedia administrator and functionary — and ...

Read the full article here..

EditorDavid | Slashdot.org

1 Comments

Login to comment

Login to comment

Comments must abide by our rules. Post Comment

test test
2022-02-13 16:00:05

test

CRYPTICA

Figure 36: An example news page, with a testing comment.

Arthur Robertson 159

Cryptica Social Media Analysis Application NEA

client/pages/_app.js

This file adds the layout component to every single page. The layout component contains the
header and some other parts.

import Layout from '../components/layout/layout';
import './global.css';

function App({ Component, pageProps }) {
return (
<Layout> // adds the layer component around the page
<Component {...pageProps} />
</Layout>
)3
}

export default App;

client/services/auth.js

This file handles authentication and making requests and is used throughout the program.

import Cookies from 'universal-cookie';
const axios = require('axios');

class HTTPRequests { // creates a class for handling HTTP
requests
async fetcher(url, auth = false) { // function to make fetch
GET requests
const headers = { // headers for the request
'"Content-Type': 'application/json'

13
if (auth) { // if auth 1is true, add the JIWT token to the
request
const cookies = new Cookies(); // create a new cookie

object
const token = cookies.get('token'); // get the token from
the cookie
if (ltoken) { // if there 1is no token, throw an error
const error = new Error('Unauthorized'); // create an
error
return Promise.reject(error); // return the error

Arthur Robertson 160

Cryptica Social Media Analysis Application NEA

} else { // if there is a token, add it to the request
headers.Authorization = 'Bearer ' + token; // add the
token to the request headers
}
}

const res = await axios.get("${process.env.
NEXT_PUBLIC_API_URL}S${url}", { headers: headers }); //
make the request

return res.data; // return the data

}

async poster(url, data, auth = false) { // function to make
POST requests
const headers = { // headers for the request
"Content-Type': 'application/json'
b5
if (auth) {
const cookies new Cookies();
const token = cookies.get('token');
if (!token) {
error = new Error('No token');
return Promise.reject(error);
} else {
headers.Authorization = 'Bearer ' + token;

}
}

const res = await axios // make the request
.post(~${process.env.NEXT_PUBLIC_API_URL}${url} , data, {
// send the data
headers: headers // with the headers
3)
.catch((error) => { // if there 1is an error
return error; // return the error

1)

return res;

}

async deleter(url, auth = false) { // function to make DELETE
requests
const headers = {
"Content-Type': 'application/json'
13
if (auth) { //
const cookies = new Cookies();

Arthur Robertson 161

Cryptica Social Media Analysis Application NEA

54 const token = cookies.get('token');

55 if (!token) {

56 error = new Error('No token');

57 return Promise.reject(error);

58 } else {

59 headers.Authorization = 'Bearer ' + token;
60 }

61 }

62 const res = await axios // make the request

63 .delete("${process.env.NEXT_PUBLIC_API_URL}S${url} , {
64 headers: headers

65 1)

66 .catch((error) => {

67 return error;

68 b

69

70 return res;

71 }

72 }

73

74 class Auth extends HTTPRequests { // function for managing
authentication, extends the HTTPRequests class and 1inherits
its methods

75 saveToken(token) { // function to save the token

76 const cookies = new Cookies(); // create a new cookie object

77 cookies.set('token', token, { // set the token in the cookie

78 path: '/',

79 expires: new Date(Date.now() + (1000 * 60 * 60 * 24 x 7)),

// set the expiry date to 1 week from now
80 sameSite: true // set the cookie to only be accessible
from the same site

81 1)

82 return Promise.resolve(); // return a resolved promise

83 }

84

85 deleteToken() { // function to delete the token

86 const cookies = new Cookies(); // create a new cookie object

87 cookies.remove('token', { path: '/' }); // remove the token
from the cookie

88 return; // return nothing

89 }

90 useUser() { // function to check if the user is logged in

91 const { data, error } = useSWR(['/auth/me', true], this.
fetcher); // get the user data from the API

92 return { // return the data and error

Arthur Robertson 162

Cryptica Social Media Analysis Application NEA

user: data, // the user data

loading: !error && !data, // if there is an error or no
data, the user is loading

error: error // the error

1}

}
export default Auth; // export the class

component/comments.js

Component for a comment. Allows the user to delete the comment using the auth.deleter
function, if the comment is their own.

import { useRouter } from 'next/router';
import Link from 'next/link';
import Auth from '../services/auth';

const Users = (props) => {
const router = useRouter();
const auth = new Auth();
async function deleteComment(comment_id) {
if (!comment_id) {
return;
}
await auth.deleter (" /news/0/comments/${comment_id}", true).
catch((err) => {
console.log(err.message);
b
router.reload();
}
return (
<>
{props.comments.map((comment, key) => (
<div
key={key}
className="flex items-center py-4 mx-auto border
border-black sm:px-8 md:px-12 sm:py-4 w-full md:w-
full px-3 mb-2 mt-8"

<div>
<h3 className='className="text-1g font-bold text-
primary-800 sm:text-x1 md:text-2x1'>

Arthur Robertson 163

Cryptica Social Media Analysis Application NEA

<Link href={"/news/${comment.news_id} }>{comment.
title}</Link>
</h3>
<p className="text-sm font-bold text-neutral-600">{
comment.date}</p>
<p className="mt-2 text-base sm:text-1lg md:text-
normal">{comment.content}</p>
{(props.user == comment.user_id || props.user.admin)
&& (
<button
onClick={() => deleteComment(comment.id)}
className="text-sm font-bold text-neutral-600"

Delete Comment
</button>
)}
</div>
</div>
)}
</>
)5
};

export default Users;

component/loading.js

Component that indicates that the page is loading.

const Loading = (props) => {
return (
<>
<div className="flex justify-center -items-center h-full -
mt-24">
<div
className={
"animate-spin rounded-full h-32 w-32 border-b-2 ' +

(props.dark ? 'border-neutral-100' : 'border-neutral
-900"')
+
>
</div>
</div>

Arthur Robertson 164

Cryptica Social Media Analysis Application NEA

</>
)3
b5

export default Loading;

component/layout/layout.js

Component that provides the basic page layout that is applied to every page.

import NavBar from './navbar/navbar';
import Head from 'next/head';
const Layout = (props) => {
return (
<>
<Head>
<title>CRYPTICA</title>
<meta name="viewport" content="viewport-fit=cover, width
=device-width, initial-scale=1.0" />
</Head>
<div className="flex flex-col min-h-screen'">
<NavBar />
<main className="flex-grow relative flex-1 dark:bg-black
dark:text-white bg-white">
{props.children}
</main>
{/* Footer *x/}
<section className="h-full bg-primary-900">
<div className="py-6 px-16 flex justify-between'">

<div>
<hl className="font-bold text-white text-x1">
CRYPTICA</h1>
</div>
</div>

<div className="border-t-2 mx-10 border-gray-500"></
div>

<div className="py-4 py-6 px-16 flex justify-between'">
<div>
<hl className="font-semibold text-white text-sm">
Copyright @ 2021</h1>
</div>

Arthur Robertson 165

Cryptica Social Media Analysis Application NEA

<ddiv>
<a href="#" className="flex space-x-2 text-white
hover:text-yellow-400">
<p className="font-semibold text-sm">GO TOP</p>
<svg
xmlns="http://www.w3.0rg/2000/svg"
className="h-6 w-6 -mt-1"
fill="none"
viewBox="0 0 24 24"
stroke="currentColor"

>
<path
strokelLinecap="round"
strokelLinejoin="round"
strokeWidth="2"
d="M8 714-4m0 014 4m-4-4v18"
/>
</svg>

</div>
</div>
</section>
</div>
</>

)3
s

export default Layout;

component/layout/navbar/ticker.js

Component that fetches data from a public cryptocurrency price API, and displays the price
change and price in a ticker format.

import Price from './price';

import { useEffect, useState } from 'react';
import axios from 'axios';

import FinancialTicker from '../ticker';
import TickerList from '../ticker/general';

const Ticker = () => {

Arthur Robertson 166

Cryptica Social Media Analysis Application NEA

const round = (num) => {
return Math.round(num * 10000) / 10000;

s

const coins = [
'bitcoin',
'ethereum',
'cardano',
'binance-coin',
lxrpl,
'dogecoin',
'polkadot',
'solano',
'uniswap',
'litecoin',
'"terra-luna',
'chainlink',
'algorand'

13

const url =
"https://api.coingecko.com/api/v3/simple/price?ids=" +
coins.join('%2c') +
'&vs_currencies=usd&include_24hr_change=true';

const [data, setData] = useState([]);
const [visible, setVisible] = useState(true);

useEffect(() => {
axios

.get(url)

.then((response) => {
setData(response.data);
//console.log(response.data);
return;

1)

.catch((error) => {
return;

1)

s, [1)s
return (
<>

{visible && (
<nav className="bg-primary-800 nav flex flex-wrap 1items-

Arthur Robertson 167

Cryptica Social Media Analysis Application NEA

center justify-between overflow-x-auto border-b
border-primary-900">
<T1ickerList>
{Object.keys(data).map((coin, key) => {
return (
<FinancialTicker
key={key}
id={key}
symbol={coin}
lastPrice={data[coin].usd}
percentage={Math.abs(Math.round(data[coin].
usd_24h_change * 10) / 10)}
currentPrice={round(data[coin].usd)}
positive={data[coin].usd_24h_change > 0}

/>
)3
1}
</TickerList>
</nav>
)}
</>
)3
+s

export default Ticker;

component/layout/account.js

Component that displays either account, or login, depending on whether the user is logged in
or not.

import Auth from '../../../services/auth';
import useUser from '../../../services/user';
const Account = () => {

const { user, loading, error } = useUser();

const auth = new Auth();

if (user) {

return <>ACCOUNT</>;
+

if (error && error.response && error.response.status === 401)
{
auth.deleteToken();
return <>LOGIN</>;

Arthur Robertson 168

Cryptica Social Media Analysis Application NEA

+
return <>LOGIN</>;

+s

export default Account;

component/coin/graph.js

Component that fetches price data from an API and displays it in a candlestick chart for a
specified cryptocurrency.

import { useState, useEffect } from 'react';
import axios from 'axios';
import ReactECharts from 'echarts-for-react';

const Graph = (props) => {
const [data, setData] = useState();
const formateDate = (timestamp) => {
const d = new Date(timestamp);
const month = [
'Jan',
'"Feb',
"Mar',
"Apr',
lMayl,
'Jun',
"Jul',
IAugl’
'Sep',
'Oct',
"Nov',
'Dec'
][d.getMonth()];
const day = d.getDate();
const year = d.getFullYear();
return "~ ${day} ${month} ${year};
s

useEffect(async () => {
if (!props.coin) {
setData([]);
return;

}

Arthur Robertson 169

Cryptica Social Media Analysis Application

NEA

I

const result = await axios(

“https://api.coingecko.com/api/v3/coins/${props.coin.
toLowerCase()}/market_chart?vs_currency=usd&days=365"

Y.catch(() => {
setData([]);
return;
b;
//console.log(result.data);

result && result.data && setData(result.data.prices);

[props.coin]);

if (!data) {

}

return null;

const option = {

xAxis: {
type: 'category',

data: data.map((d) => formateDate(d[0]))

1,
yAxis: {
type: 'value'
1
series: [
{
data: data.map((d) => d[1]),
type: 'line',
showSymbol: false
}
1,
title: {

text: props.coin + '/usd',
x: 'center',
top: '10px'
b
tooltip: {
trigger: 'axis',
axisPointer: {
type: 'cross',
label: {
backgroundColor: '#6a7985'
}
+
}

Arthur Robertson

170

Cryptica Social Media Analysis Application NEA

s

return (
<>
<ReactECharts
option={option}
notMerge={true}
lazyUpdate={true}
style={{ height: '100%', width: '100%' }}
/>
</>
)
+s

export default Graph;

component/analysis/tweet.js

Component that imitates a tweet embed, that can be supplied with data to appear like a
tweet.

import Image from 'next/image';

export default function Tweet(props) {
const authorUrl = ~“https://twitter.com/${props.tweet.username
17
const likeUrl = “https://twitter.com/intent/like?tweet_id=${
props.tweet.id}";
const retweetUrl = “https://twitter.com/intent/retweet?
tweet_id=${props.tweet.id} ;

const replyUrl = ~“https://twitter.com/intent/tweet?in_reply_to
=${props.tweet.id}";
const tweetUrl = ~https://twitter.com/${props.tweet.username}/

status/${props.tweet.id} ;

const formattedText = props.tweet.tweet.replace(/https:\/\/[\n
\S1+/g, '");

return (
<>
<div className="flex items-center'">
<a className="flex h-12 w-12" href={authorUrl} target="
_blank" rel="noopener noreferrer">

Arthur Robertson 171

Cryptica Social Media Analysis Application NEA

16 <Image
17 alt={props.tweet.username}
18 height={48}
19 width={48}
20 src={props.user.avatar}
21 className="rounded-full"
22 />
23
24 <a
25 href={authorUr1l}
26 target="_blank"
27 rel="noopener noreferrer"
28 className="author flex flex-col ml-4 !no-underline"
29 >
30 <span
31 className="flex items-center font-bold !text-neutral
-900 dark:!text-neutral-100 leading-5"
32 title={props.tweet.username}
33 >
34 {props.tweet.name}
35 {props.user.is_verified ? (
36 <svg
37 aria-label="Verified Account"
38 className="ml-1 text-complementary-500 dark:text
-white inline h-4 w-4"
39 viewBox="0 0 24 24"
40 >
41 <g fill="currentColor">
42 <path d="M22.5 12.5c0
-1.58-.875-2.95-2.148-3.6.154-.435.238-.905.238-1.4
0-2.21-1.71-3.998-3.818-3.998-.47
0-.92.084-1.336.25C14.818 2.415 13.51 1.5
12 1.55-2.816.917-3.437 2.25c
-.415-.165-.866-.25-1.336-.25-2.11 0-3.818
1.79-3.818 4 0 .494.083.964.237
1.4-1.272.65-2.147 2.018-2.147 3.6 0
1.495.782 2.798 1.942
3.486-.02.17-.032.34-.032.514 0 2.21 1.708
4 3.818 4 .47 0 .92-.086 1.335-.25.62 1.334
1.926 2.25 3.437 2.25 1.512 0 2.818-.916
3.437-2.25.415.163.865.248 1.336.248 2.11 0
3.818-1.79 3.818-4
0-.174-.012-.344-.033-.513 1.158-.687
1.943-1.99 1.943-3.484zm-6.616-3.3341-4.334
6.5c-.145.217-.382.334-.625.334-.143

Arthur Robertson 172

Cryptica Social Media Analysis Application NEA

0-.288-.04-.416-.1261-.115-.094-2.415-2.415
C—.293-.293-.293-.768 0-1.06s.768-.294 1.06
O11.77 1.767 3.825-5.74c.23-.345.696-.436
1.04-.207.346.23.44.696.21 1.04z" />
</g>
</svg>
) : null}

<span className="!text-neutral-500" title={"@${props.
tweet.username} " }>
@{props.tweet.username}

<a className="ml-auto" href={authorUrl} target="_blank"
rel="noopener noreferrer">
<svg viewBox="328 355 335 276" height="24" width="24"
xmlns="http://www.w3.0rg/2000/svg">
<path
d="M 630, 425 A 195, 195 0 @ 1 331, 600 A
142, 142 0 0 0 428, 570 A 70, 70 0 01
370, 523 A 70, 70 0 0 0 401, 521 A 70,
70 0 0 1 344, 455 A 70, 70 0 0 0 372,
460 A 70, 70 0 0 1 354, 370 A 195, 195
O 0 0 495, 442 A 67, 67 0 0 1 611, 380
A 117, 117 @ © O 654, 363 A 65, 65001
623, 401 A 117, 117 0 0 0 662, 390 A 65,
65 0 0 1 630, 425 z"
style={{ fill: '#3BA9EE' }}
/>
</svg>

</div>
<div className="mt-4 mb-1 leading-normal whitespace-pre-
wrap text-lg !text-neutral-700 dark:!text-neutral-300">
{formattedText}
</div>
{props.tweet.photos && props.tweet.photos.length ? (
<div
className={
props.tweet.photos.length ===
? 'inline-grid grid-cols-1 gap-x-2 gap-y-2 my-2'
"inline-grid grid-cols-2 gap-x-2 gap-y-2 my-2'
b

{props.tweet.photos.map((m, key) => (

Arthur Robertson 173

Cryptica Social Media Analysis Application NEA

<div key={key}>
<img alt={props.tweet.tweet} src={m} size="small"
className="rounded" />
</div>
)2
</div>
) : null}
<a
className="!text-neutral-500 text-sm hover:!underline"
href={tweetUr1}
target="_blank"
rel="noopener noreferrer"

<time title={"Time Posted: ${props.tweet.datetime} }
dateTime={props.tweet.datetime}>
{props.tweet.datetime}
</time>

<div className="flex !text-neutral-700 dark:!text-neutral
-300 mt-2">
<a
className="flex items-center mr-4 !text-neutral-500
hover: !text-complementary-600 transition hover:!
underline"
href={replyUrl}
target="_blank"
rel="noopener noreferrer"

<svg className="mr-2" width="24" height="24" viewBox="
0 0 24 24">
<path
className="f1ill-current"
d="M14.046 2.2421-4.148-.01h-.002c-4.374 0-7.8
3.427-7.8 7.802 0 4.098 3.186 7.206 7.465 7.37
v3.828c0
.108.045.286.12.403.143.225.385.347.633.347.138
O .277-.038.402-.118.264-.168 6.473-4.14
8.088-5.506 1.902-1.61 3.04-3.97 3.043-6.312v
-.017c-.006-4.368-3.43-7.788-7.8-7.79zm3.787
12.972c-1.134.96-4.862 3.405-6.772 4.643V16.67
c0-.414-.334-.75-.75-.75h-.395¢c-3.66
0-6.318-2.476-6.318-5.886 0-3.534 2.768-6.302
6.3-6.30214.147.01h.002c3.532 0 6.3 2.766 6.302
6.296-.003 1.91-.942 3.844-2.514 5.176z"

/>

Arthur Robertson 174

Cryptica Social Media Analysis Application NEA

100
101

102
103
104

105
106
107
108
109

110
111
112

113
114
115

116
117
118

119
120
121
122
123

124
125

</svg>
{new Number (props.tweet.replies_count).
toLocaleString()}

<a
className="flex items-center mr-4 !text-neutral-500
hover:!text-green-600 transition hover:!underline"
href={retweetUr1}
target="_blank"
rel="noopener noreferrer"

<svg className="mr-2" width="24" height="24" viewBox="
0 0 24 24>
<path
className="f1ill-current"
d="M23.77 15.67c-.292-.293-.767-.293-1.06 01-2.22
2.22V7.65¢c0-2.068-1.683-3.75-3.75-3.75h-5.85cC
-.414 0-.75.336-.75.755.336.75.75.75h5.85¢c1.24
0 2.25 1.01 2.25 2.25v10.241-2.22-2.22c
.293-.293-.768-.293-1.06 0s-.294.768 0 1.0613
.5 3.5¢.145.147.337.22.53.22s5.383-.072.53-.2213
.5-3.5Cc.294-.292.294-.767 0-1.06zm-10.66 3.28H7
.26c-1.24 0-2.25-1.01-2.25-2.25V6.4612.22 2.22c
.148.147.34.22.532.22s5.384-.073.53-.22cC
.293-.293.293-.768 0-1.061-3.5-3.5cC
-.293-.294-.768-.294-1.06 01-3.5 3.5c
-.294.292-.294.767 0 1.06s.767.293 1.06 012
.22-2.22V16.7cO 2.068 1.683 3.75 3.75 3.75h5.85
c.414 0 .75-.336.75-.75s-.337-.75-.75-.75z"

/>
</svg>
{new Number (props.tweet.retweets_count).
toLocaleString()}

<a
className="flex items-center !text-neutral-500 hover:!
text-red-600 transition hover:!underline"
href={1likeUr1l}
target="_blank"
rel="noopener noreferrer"

<svg className="mr-2" width="24" height="24" viewBox="
0 0 24 24">
<path
className="f1ill-current"

Arthur Robertson 175

Cryptica Social Media Analysis Application NEA

d="M12 21.638h-.014C9.403 21.59 1.95 14.856 1.95
8.478c0-3.064 2.525-5.754 5.403-5.754 2.29 0
3.83 1.58 4.646 2.73.813-1.148 2.353-2.73
4.644-2.73 2.88 0 5.404 2.69 5.404 5.755 0
6.375-7.454 13.11-10.037 13.156H12zM7.354 4.225
C-2.08 0-3.903 1.988-3.903 4.255 0 5.74 7.035
11.596 8.55 11.658 1.52-.062 8.55-5.917
8.55-11.658
0-2.267-1.822-4.255-3.902-4.255-2.528 0-3.94
2.936-3.952 2.965-.23.562-1.156.562-1.387
0-.015-.03-1.426-2.965-3.955-2.965z"

/>
</svg>
{new Number (props.tweet.likes_count).
toLocaleString()}

</div>
</>
)5
}

components/analysis/search.js

Search bar component.

const Search = () => {
return (
<div className="space-x-5 flex">
<div className="relative inline-flex self-center flex-
initial">
<svg
className="text-white bg-primary-700 absolute top-0
right-0 m-2 pointer-events—none p-2 rounded"

xmlns="http://www.w3.0rg/2000/svg"
width="40px"
height="40px"
viewBox="0 0 38 22"
version="1.1"

<g stroke="none" strokeWidth="1" fill="none" fillRule=
"evenodd">
<g transform="translate(-539.000000, -199.000000)"
fill="#ffffff" fillRule="nonzero">

Arthur Robertson 176

Cryptica Social Media Analysis Application NEA

15

16
17
18

19

20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35

36
37

38
39
40
41
42
43
44

<g id="Icon-/-ArrowRight-Copy-2" transform="
translate(538.000000, 183.521208)">
<polygon
id="Path-Copy"
transform="translate(20.000000, 18.384776)
rotate(135.000000) translate(-20.000000,
-18.384776) "
points="33 5.38477631 33 31.3847763 29
31.3847763 28.999 9.38379168 7 9.38477631 7
5.38477631"
/>
</g>
</g>
</g>
</svg>
<select className="text-x1 font-bold rounded border-2
border-primary-700 text-neutral-600 h-14 w-44 pl-5 pr
-10 bg-white hover:border-neutral-400 focus:outline-
none appearance-none'>
<option>Bitcoin</option>
<option>Ethereum</option>
<option>Doge</option>
<option>Litecoin</option>
<option>Cardano</option>
</select>
</div>
<input
placeholder="elonmusk"
className="flex-auto text-x1l font-bold rounded border-2
border-primary-700 text-neutral-600 h-14 pl-5 pr-10
bg-white hover:border-neutral-400 focus:outline-none
appearance-none"
/>
<button className="text-x1 font-bold rounded text-white h
-14 px-8 bg-primary-800 hover:bg-primary-900 focus:
outline-none appearance-none'>
Submit
</button>
</div>
)3
}s

export default Search;

Arthur Robertson 177

Cryptica Social Media Analysis Application NEA

components/analysis/ohcl.js

Another graph component, that takes in data and displays it as a candlestick chart.

import ReactECharts from 'echarts-for-react';

const OHCL = (props) => {
const data = props.data;
//console.log(data);
const formatInt = (int) => {
if (int.slice(-1) === '0') {
int = int.slice(0, -1);
return formatInt(int);
} else {
return parseFloat(int, 10);
}
+s

if (!data) {
return null;

+
const downColour = '#ec0000';
const downBorderColour = '#8A0000';

const upColour = '#00da3c';
const upBorderColour = '#008F28';
const option = {

dataset: {
source: data

I

tooltip: {

trigger: 'axis',
axisPointer: {
type: 'cross'

I
renderMode: 'html',
padding: 4,

/*formatter: function (params) {
console.log(params[0]);
const colour = params[0].data[l] > params[0].data[4] ? '
red' : 'green';
return ~3s{
params[0] .data[4]}";
x/

Arthur Robertson 178

Cryptica Social Media Analysis Application NEA

extraCssText: '@apply bg-neutral-200 p-10'

b
grid: [
{
left: '8%',
right: '5%',
bottom: '10%'
}
1,
xAxis: [
{
type: 'time',
scale: true
+
1,
yAxis: [
{
scale: true,
type: 'value',
axisLabel: {
formatter: 'S${value}'
+
}
1,
dataZoom: [
{
type: 'dinside',
xAxisIndex: [0, 1]
}
1,
series: [
{

type: 'candlestick',
itemStyle: {
color: upColour,
color0®: downColour,
borderColor: upBorderColour,
borderColor®: downBorderColour
3,
encode: {
xX: 0,
y: [l’ 4’ 3, 2]7
tooltip: [1, 4, 3, 2]
b

Arthur Robertson 179

Cryptica Social Media Analysis Application

NEA

markLine: {
itemStyle: {
color: 'rgba(255, 173, 177, 1)'
I
symbol: 'none',
lineStyle: {
type: 'solid',
capp: 'round',
width: 2,
opacity: 0.8,
color: 'blue'
I
label: {
show: true,
fontSize: 17,
formatter: 'Tweet',
color: 'blue',
fontWeight: 'bold',
opacity: 0.8
I
data: [
{
name: 'Tweet',
xAxis: data[29][0] - 30000,
type: 'max'

13
return (
<>
<ReactECharts
option={option}
notMerge={true}
lazyUpdate={true}

style={{ height: '"100%', width: '100%'

/>
</>
)3
+s

export default OHCL;

1}

Arthur Robertson

180

Cryptica Social Media Analysis Application NEA

TESTING

CLIENT APPLICATION TESTING

| have tested the clients performance by using Google’s lighthouse page analysis tool.

& > C © localhost:3000 Chx @@ o R A

CRYPTICA NEWSCOINS ~ ACCOUNTANALYSIS ~ TWEETANALYSIS

POLKADOT$19.29 TERRA'$5532 DOGECOINS0.147793 ~ CARDANO$1.075 CHAINLINK$1671 ETHEREUMS3088.51 BITCIBOGHN$526.)
LUNA,

es Network Lighthouse

calhost:3000/

@O O 4
SEO PWA

Performance Accessibility Best
Practices

\g performance in this location: IndexedDB. Audit this
jindow to prevent those resources from affecting your scores.

Cryptocurrency

Analysis s
Made Simple.

Use Social Media to empower your Cryptocurrency analysis.
Start using our tool today. @ First Contentful Paint

METRICS

Figure 37: Screenshot of the lighthouse tool

It performed excellently, scoring 90-100 in all 4 categories.

To test the clients functionality, | prepared a table full of tests. Then | recorded a video where |
go through and check each test. You can see the video and the table below.

Video Link: https://youtu.be/zSj_id917-c

Arthur Robertson 181

https://youtu.be/zSj_id9I7-c

Cryptica Social Media Analysis Application

NEA

ID Component

1.1 News index page

1.2 News index page

1.3 News index page

1.4 News index page

2.1 News article page

2.2 News article page

23 News index page

2.4 News index page

2.5 News index page

Test

There should be a news page
that displays all the articles in
the database

There should be a feature
article, that has a full size
image and headline at the top
of the page

There should be a list of
articles with title, image, date,
and other info

Each article on news index
page is clickable, and clicking
brings you to the articles page

Each article should have its
own page that is accessible
from the news index page

There should be a full size
article image and article title
displayed

On each articles page, an
excerpt from the begininning
of the article is displayed

Each article page has a link to
the original article

Each article page has a
comments field at the bottum.
This should be grayed out if the
user is not logged in

Result

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Video
Times-
tamp

0:04

0:03

0:04

0:13

0:13

0:13

0:13

0:20

0:19

Arthur Robertson

182

Cryptica Social Media Analysis Application

NEA

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

Component

Coin index page

Coin index page

Coin index page

Individual coin page

Individual coin page

Individual coin page

Individual coin page

Individual coin page

Individual coin page

Test

There should be a coin index
page that has a table with
information about the top 50
cryptocurrencies

Statistics about each coin
should be displayed in the
table

Each coin in the table should
be clickable, and should bring
you to the coins unique page

Each coin should have a page
that displays some information
about the coin

Each coins page should have a
graph showing the price of the
coin against the dollar in the
last year

Other metrics such as market
cap should be shown on the
coins page

Related news articles should

be displayed on the coins page

Clicking on one of the related
articles should take you to the
articles page

Each coin page should have a
description of the coin

Result

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Video
Times-
tamp

0:25

0:25

0:40

0:40

0:42

0:40

0:40

0:56

0:40

Arthur Robertson

183

Cryptica Social Media Analysis Application

NEA

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

7.1

7.2

Component

Registration page

Registration page

Registration page

Registration page

Account page

Account page

Account page

Account page

Login page

Login page

Test

There should be a registration
page, that has a form for name,
email, and password

Attempting to register with an
email that already exists
should display an error

Attempting to register with a
password that does not meet
the security requirements
should display an error

Registering successfully should
redirect you to the account

page
There should be an account

page that is only accessible to
logged in users

There should be a banner that
welcomes the name of the user

The logged in users email
should be displayed

There should be a logout
button, that upon clicking logs
the user out

There should be a login page
that allows existing users to
login

There should be a form that
users can enter their email and
password

Result

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Video
Times-
tamp

1:09

1:26

1:20

1:37

1:37

1:37

1:37

1:48

1:49

1:49

Arthur Robertson

184

Cryptica Social Media Analysis Application NEA
Video
Times-
ID Component Test Result tamp
7.3 Login page Users attempting to login with Pass 1:59
invalid credentials should be
shown an error message
7.4 Login page Users logging in with a correct Pass 2:06
password should be redirected
to the account page
8.1 Account analysis There should be an account Pass 2:10
page analysis page
8.2 Account analysis On the page there should bea Pass 2:10
page form that has a username
input, and a dropdown
allowing a quantity of tweets
to be selected
8.3 Account analysis After submitting the form, Pass 2:27
page graphs should populate the
page
8.4 Account analysis There should be a pie chart Pass 2:27
page graph showing the distribution
of devices that the user has
used to tweet from
8.5 Account analysis There should be a heatmap Pass 2:30
page showing the times that the
user has historically tweeted at
8.6 Account analysis There should be a box Pass 2:27
page displaying how many followers
the user has, in addition to
other details such as the profile
picture and following count
Arthur Robertson 185

Cryptica Social Media Analysis Application NEA

Video
Times-
ID Component Test Result tamp

9.1 Tweet analysis page There should be anindividual Pass 3:08
tweet analysis page

9.2 Tweet analysis page There should be a form that Pass 3:08
has a field for entering a
username, and a select box for
choosing between one of
several cryptocurrencies to
search for

9.3 Tweet analysis page Once submitted, a list of Pass 3:16
relevent tweets should be
displayed on the right side of
the page

9.4 Tweet analysis page The user should be able to Pass 3:30
click on and select a tweet.
Doing so should reveal a new
section to the page

9.5 Tweet analysis page This section should containa Pass 3:30
graph that shows the selected
coins price at the time of the
tweet. The time of the tweet
should be highlighted on the
graph, showing the impact that
the tweet has had.

9.6 Tweet analysis page The predicted sentiment of the Pass 3:38
tweet should be displayed in
this section

Arthur Robertson 186

Cryptica Social Media Analysis Application

NEA

ID Component
10.1 Ticker layout
10.2 Ticker layout
11.1 Authentication
11.2 Authentication
11.3 Authentication
11.4 Authentication
SERVER CODE TESTING

Test

There should be a rotating
ticker below the menu bar the
displays the live price of
certain coins

Clicking on any of the coins in
the ticker should bring you to
the coins page

Only logged in users should be
able to access either of the
analysis pages

Only logged in users should be
able to comment on an article

Only logged in users should be
able to view a users profile

A button in the menu bar
should display either
“ACCOUNT” or “LOG IN”
depending on whether the
user is logged in or not

Result

Pass

Pass

Pass

Pass

Pass

Pass

Video
Times-
tamp

4:18

4:21

4:57

4:32

5:11

1:46

You can find in the below table the set of tests that | will be performing on some individual

functions and part of my code. Below the table, you will find evidence of each the tests.

Arthur Robertson

187

Cryptica Social Media Analysis Application

NEA

Component

RSA

RSA

RSA

Miller Rabin
Primality

Miller Rabin
Primality

Sentiment
Analysis
Model

Sentiment
Analysis
Model

Test

Test to generate an RSA
key

Test to check RSA key is
valid by encrypting
plaintext using RSA
algorithm

Test to check RSA key is
valid by decryption
cipher using RSA
algorithm

Test to check the Miller
Rabin function can
identify whether a
number is prime

Test to check the Miller
Rabin function can
identify whether a
number is non prime

Test positive input to
check whether the
model identifies the
input as positive

Test negative input to
check whether the
model identifies the
input as negative

Expected Result

The RSA key generator
should produce a public
and private keypair

The RSA public key
should be capable of
being used to encrypt a
value

The RSA private key
should be able to
decrypt the cipher back
to the original plaintext
value using the formula

True should be returned
for each of the inputs

False should be
returned for each of the
inputs

The model should
output a number
between 60% and 100%
to classify an item as
positive

The model should
output a number
between 0% and 40% to
classify an item as
negative

Test Data

The keysize will be set
to 8 bits. This is so the
numbers are low and
easy to verify manually.

The plaintext we will use
is 12345

The ciphertext we will
use will be the result of
the previous step

[100, 291, 949, 3107,
3615, 3693, 6381, 7869,
7913] - known non
primes

[89, 857, 2473, 4273,
6029, 6791, 7789, 7823,
7901, 7919] - known
primes

The input “Bitcoin is so
cool! I think it is great”
will be inputted into the
model

The input “I think
Cryptocurrencies are so
stupid and a waste of
resources” will be
inputted into the model

Arthur Robertson

188

Cryptica Social Media Analysis Application

NEA

Component

Sentiment
Analysis
Model

JWT
Creation

JWT
Verification

JWT
Verification

Base64
Encoding

Base64
Decoding

Test

Check accuracy of
model on training and
testing data

Test to generate a JSON
Web Token with
supplied user data

Test to verify JSON Web
Token using a valid
signed token

Invalid signed RSA

Check that ascii text can
be base64 encoded

Check that base64 can
decode to ascii text

Expected Result

As outlined in the
objectives, ideally
above 75% accuracy

JSON Web Token
Created that contains
encoded data, signed
with RSA private key

JSON Web Token should
be initialised into class
object, which can then
be used to decode the
token to view it’s data

The class should throw
an error stating that the
signature isinvalid

The test data input
should be returned
encoded using base64.
The validity of this can
be verified using a
number of online
base64 encoding tools

The base64 should be
decoded and returned
as ASCI|

Test Data

As outlined in the design
phase, | will use part of

the training dataset that
has been split off to test
and evaluate the model

The following JSON

should be used: {'user

': test',
'"test@test.com'}

"email':

Token from previous
test should be used as
input

Token from previous
step with a modified
signature should be
used

“hello”

aGVsbG8= (base64 of
hello)

You can find how I’ve done each test and evidence for each one below.

Arthur Robertson

189

Cryptica Social Media Analysis Application NEA

RSA Testing

To test my RSA function works as intended, | will be testing it by generating very small RSA
keys which | can manually verify using the maths and algorithms | have described earlier. |
am using a keysize of 8 to test, which means that n is of a maximum size of (28)2, or 65536.

def gcd(a, b):
return egcd(a, b)[0]

=8

generate_prime(
generate_prime(

while True:
= random. (2 *% (-1), 2 %k (
if gcd(e, (p - 1) % (q - 1)) ==
break

= egcd(e, (p—-1) % (q -1))
% ((p-1) % (qg-1))

print("public key:",
print("private key:",

PROBLEMS OUTPUT DEBUG CONSOLE GITLENS TERMINAL

> python rsa.py
public key: (42558, 151)
private key: (42558, 26791)

Figure 38: Screenshot of the test and generated keys

My program generated the pair 42588, 151 for the public key, and 42558, 26791 for the private
key.

Arthur Robertson 190

Cryptica Social Media Analysis Application NEA

Using the formula C' = P° mod n, where C'is the cipher text, and P is the plaintext, | am going
to attempt to encrypt the plaintext of 12345. Substituting the values into the formula gets the
following result:

C = 123451 mod 42558
C = 27351

>>> (12345 ** 151) % 42558

2)35

Figure 39: Screenshot of encryption calculation

Here we have calculated the cipher text to be 27351. Now to decrypt, we will use the formula
P = C%modn.

P = 27351%™1 mod 42558
P =12345

>>> (27351 ** 26791) % 42558
12345

Figure 40: Screenshot of decryption calculation

We have now successfully proved that encryption and decryption works using RSA, as we
have got our original plaintext back.

Miller_Rabin Function Testing

The Miller_Rabin function should return True when a number is prime, and false when a
number is not prime. To test it, | supplied it with a list of known primes and non primes and
checked to ensure that the outputted result matched the expected result.

Arthur Robertson 191

Cryptica Social Media Analysis Application NEA

= [100, 291, 949, 3107, 3615, 3693, 6381, 7869, 7913]
= [89, 857, 2473, 4273, 6029, 6791, 7789, 7823, 7901, 7919]

for in ’
print(x, miller_rabin(x))

for in 3
print(x, miller_rabin(x))

PROBLEMS 1 OUTPUT DEBUG CONSOLE GITLENS TERMINAL

) python tool.py
100 False
291 False
949 False
3107 False
3615 False
3693 False
6381 False
7869 False
7913 False
89 True
857 True
2473 True
4273 True
6029 True
6791 True
7789 True
7823 True
7901 True
7919 True

Figure 41: Screenshot of prime test

As you can see above, the test passed and the function correctly identified all the numbers as
prime or non prime.

Arthur Robertson 192

Cryptica Social Media Analysis Application NEA

Sentiment Analysis Model Testing

The function predict_sentiment outputs a number from 0 to 1 depending on the predicted
sentiment of the input. To calculate a percentage, the number should be times by 100. As
mentioned above, a value below 40% is considered negative, and above 60% positive.

First, | have tested the input Bitcoin is so cool! I think it is great with my
model. It successfully managed to predict the sentiment as positive, with a value of 75.99%.

v @ predict_sentiment(model, "Bitcoin is so cool! I think it is great")

> ©.7598732499697987

Figure 42: Predicting sentiment of a Positive Input
Next, | entered a negative input into my predict_sentiment function. | used the input
I think Cryptocurrencies are so stupid and a waste of resources.

° predict_sentiment(model, "I think Cryptocurrencies are so stupid and a waste of |resources")

> ©-3845724089059668

Figure 43: Predicting sentiment of a Negative Input

This time, the model predicted the negative text had a sentiment value of 38.46%. This is
close, but just below the 40% border, suggesting that the model could be improved further.

Finally, | evaluated the model using the built in evaluation tool. This tests it against the
designated test data which was split off from the original dataset.

testloss, testacc = evaluate(model, iterator)

print(f'Test Loss: {testloss}, Test Acc: {testacc}%')

Test Loss: 0.292, Test Acc: 87.96%

Figure 44: Evaluating the Sentiment Analysis Model

Arthur Robertson 193

Cryptica Social Media Analysis Application NEA

The model achieved a test accuracy of 87.96%, with a loss of 0.292 The loss is a useful measure
of how well a model is performing. It is calculated based on training and validation data, and
is a summation of errors made for each example in the sets. It is used when optimising models.
My loss value and accuracy suggest that my model performs ok, but could be improved with
fine tuning and further training. For my purposes | consider my model successful.

JSON Web Token

Firstly, using the AccessToken class | defined in /api/core/security.py, | attempted to
initialise the class using the JSON data { 'user': 'test', 'email': 'test@test.com

3.

>>>
>>>

>>> from core.security import AccessToken as AccessToken

>>>

>>> token = AccessToken(data={'user': 'test', 'email': 'test@test.com'}

>>>

>>> token
eyJhbGci0iJSUzIINiIsInR5cCI6IkpXVCI9.eyl1c2VyIjoidGVzdCISImVtYWlsIjoidGVzdEBOZXNOLmNvbSISImV4cCIGMTY@0Tg3Mzg50C40NDkxMjN9. YMt—1_NynxnkCHvtq8_LZFpge

XC1zrIevAhEc8p-z3zDCftn@9weaoXNQ2zEy1VPPkWcv4vrn55SmsOLG4cTDt2PMGTI-Pri8qlODEiGANr7m7m515yX5mWr thXdQBKyaiRhFOtQALhLO9wwR4CmCT_boDW249_0oulfGDTMlwy_C
rsDKOx5dICNtCydmN-1VkpcW9rdtjOL-N6Y1QHImARTqXa_k_jPwtRYCJI4SG4LyLZA1BKZg2ZQWLCRFZd9drqZpje_EOmfm9ZRjchJTZQ54thof1l_vAM8sIDVdCYxIxzVS-vcIe6lkb2mtXV2qV
ymnW2Hj Z4VttqkEIqUAQHGwW

>>>

>>> token.decode_token()

{'user': 'test', 'email': 'test@test.com', 'exp': 1649873898.449123}

>>>

Figure 45: Generating a JSON Web Token using the AccessToken class

My class successfully created a JSON Web Token signed with my RSA private key. Using the
online JSON Web Debugging tool https://jwt.io, | was able to verify that the signature and
JSON Web Token was valid by inputting the token and my RSA public key.

Arthur Robertson 194

https://jwt.io

Cryptica Social Media Analysis Application

NEA

Encoded PASTE A TOKEN HERE

Algorithm

eyJhbGci0iJSUzITNiIsInR5¢cCI6IkpXVCJ9. ey
J1c2VyljoidGVzdCIsImVtYWlsIjoidGvzdEBGZ
XNBLmNvbSIsImV4cCI6MTYBO0Tg3Mzg50C40NDkx
MjN9 ., YMt-
1_NynxnkCHvtq8_LZFpgeXCl1zrIevAhEc8p-
z3zDCftn@9weaoXNQ2zEy1VPPkWcv4vrn55Sms0
LG4cTDt2PMGTI-
PrJ8qlODEiGdNr7m7m515yX5mWr1hXdQBKyaiRh
FOtQAThLO9wwRACMCT _boDW249_8ou1fGDTM1lwy_
CrsDKOx5dICNtCydmN-1VkpcW9rdtjoL-
N6Y1QHJmARfgXa_k_jPwtRYCJA4SG4LYyLZA1BKZg
2ZQW1CRFZd9drqZpje_EOmfm9ZRjchJTZQ54tho
f1_vAM8sJDVACYxIxzVS-
veIe6lkb2mtXV2qVymnW2HjZ4VttgkEIqUAQHGwW

& Signature Verified

Figure 46: VVerifying the created JSON Web Token

R$256 ~

Decod ed EDIT THE PAYLOAD AND SECRET

HEADER: ALGORITHM & TOKEN TYPE

{

"alg": "RS256",
Trypt: "UWT®
}
PAYLOAD: DATA
"email”: "test@test.com",

"exp”: 1649873898.449123
}

VERIFY SIGNATURE

RSASHA256(
base64UrlEncode (header) + "." +
base64UrlEncode (payload),
mdybadg7QaY1zINgxqilY.iNguelmo
LA1vEZ

Private Key in PKCS #8, PKCS #
1, or JNK string format. The k

ey never leaves your browser.

SHARE JWT

Next, | attempted to initialise the AccessToken class using the JSON Web Token just created in

the previous step.

Arthur Robertson

195

Cryptica Social Media Analysis Application NEA

>>> token = AccessToken(token='eyJhbGci0iJSUzIINiISInR5cCI6IkpXVCI9.eyJ1c2VyIjoidGVzdCISImVtYWLsIjoidGVzdEBOZXNOLMNvbSIsImV4cCI6MTY@0Tg3Mzg50C40NDk
XMjN9. YMt-1_NynxnkCHvtq8_LZFpgeXC1lzrIevAhEc8p-z3zDCftn@9weaoXNQ2zEy1VPPkWcv4vrn5SSmsOLG4cTDt2PMGTI-PrJ8ql@DEiGANr7m7m5 15yX5mWr1hXdQBKyaiRhFOtQA1hL9
wwR4CmCT_boDW249_0oulfGDTMlwy_CrsDK@x5dICNtCydmN-1VkpcW9rdtjOL-N6Y1QHImARTgXa_k_jPwtRYCJ4SGALyLZA1BKZg2ZQW1CRFZd9drqZpje_EOmfm9ZRjchJTZQ54thofl_vAM
8sJDVdCYxIxzVS—-vcIe6lkb2mtXV2qVymnW2HjZ4VttqkEIQUAQHGW")

>>>

>>> token.decode_token()

{'user': 'test', 'email': 'test@test.com', 'exp': 1649873898.449123}
>>>

>>> token.verify_token()

Figure 47: The token being verified using the AccessToken class

The class successfully verified the token using the RSA public key, and successfully decoded it
to get the original data inputted, proving the class works as intended.

Finally, | attempted to use the class with an invalid JSON Web Token. By changing the very
last character of the token created in the previous steps, the signature becomes invalid. When
attempting to initiate the class using this modified token, an error was thrown, proving that
only tokens with valid signatures can be verified and used.

>>> token = AccessToken(token='eyJhbGci0iJSUzIINiISInR5cCI6IkpXVCI9.eyl1c2VyIjoidGVzdCIsImVtYWlsIjoidGVzdEBOZXNOLMNvbSISImV4cCI6MTYO0Tg3Mzg50C4ONDk
XMjN9. YMt-1_NynxnkCHvtq8_LZFpgeXC1lzrIevAhEc8p-z3zDCftn@9weaoXNQ2zEy1VPPkWcv4vrn5SSmsOLG4cTDt2PMGTI-PrJ8qlODEiGdNr7m7m515yX5mwWr1hXdQBKyaiRhFOtQA1hL9
wwR4CmCT_boDW249_00oulfGDTMlwy_CrsDKOx5dICNtCydmN-1VkpcW9rdtjOL-N6Y1QHImARTgXa_k_jPwtRYCI4SG4ALYyLZA1BKZg2ZQW1CRFZd9drqZpje_EOmfm9ZRjchJTZQ54thof1_vAM
8s5JDVACYxIxzVS-vcIeblkb2mtXV2qVymnW2HjZ4VttqkEIqUAQHGb ')

[('rsa routines', 'RSA_padding_check_PKCS1_type_1', 'invalid padding'), ('rsa routines', 'rsa_ossl_public_decrypt', 'padding check failed')]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/arthur/Code/crypticaapi/core/security.py", line 45, in __init__
raise Exception("Invalid token") # if not raise an exception
Exception: Invalid token
>>>

Figure 48: Token with invalid signature being rejected

Base64

Using the Base64 class, | encoded the string ‘hello’, and got the output aGVsbG8=. This
matches the expected value, which can be verified online using a number of tools.

Then, | decoded the same string and got back the original input of ‘hello’. This proves the test
successful, and that the base64 encoder and decoder works as intended.

Arthur Robertson 196

Cryptica Social Media Analysis Application NEA

>>> from utils.base64 import Baseb64
>>2>

>>> base64 = Baseb64()
>

>>> baseb64.encode('hello')

'aGVsbG8="

- -

>>> base64.decode('aGVsbG8=")
"hello’

o>

Figure 49: Base64 class encoding and decoding hello.

API TESTING

Testing my API server requires me to manually send multiple tests with different types of data
to each of the routes. | have organised my testing with the below table, which contains a
summary of what the test and expected result is. The table has been orientated horizontally
to fit on the page.

Arthur Robertson 197

NEA

Cryptica Social Media Analysis Application

1led/ssed

ssed M0 00¢

Jo1i3

pasuoy}

-neun

ssed TOoV

Jou3

pasuoy}

-neun

Ssed TOv

uayol
gsm
Ssed NOSr

asuods

-9y IdY
pa1oadx3

aseqejep ul S)sixa
U9X01 WOJ4 e3ep J3SN
"Aay 211qnd vSy Suisn
paljLIaA anjeudis
us)0ol g9M NOSF

yoyew
1o} aseqelep ¥23yd 0}
d]qeun ‘sjieap Jo yoeT

aseqejep ysjew jou
Op S|eljuapald Jas

Koy 91enuid

vSy Suisn paudis

pue ‘sjie3ap Jasn 3uisn
Pa31ea.4d U3 0] goM
NOS “Suiysey duisn
aseqgejep ul sanjea
Jsuiede paydjew
S]e13uaPaId JAs

WC_mmqu.hn_ JoNIoS

uiwpe
/1asn :uoljesijusayine

SUON :pJomssed
‘wodjlews®3unssy
Jlews

pJOMSSedpl|eAu|
:p4somssed
‘wodlews®3u11sa)
Jlews

i€zT3unsa] :piomssed
‘wodlewa®@3uIsa)
Jlews

ey1eq1sa]

uoljesnuayine

139 pljeA yum jsanbay sw/yine/ T'¢

S|enuapald
1S0d ouguisnuigol uigoj/yine/ €1
sjennuapald
150d pleaut Suisn uido] uigoj/yine/ 7’1
s|enuapa.d
1S0d pljeA 3uisn ui3oT uidoj/yine/ 11
PoyIsIN uondudsag 3julodpuidy ql

dllH

198

Arthur Robertson

NEA

Cryptica Social Media Analysis Application

JoJi3
plieAu|

SSed [44%

Jo.3
PIuo)
Ssed 60¥

usyol
gsm

Ssed NOSI

Jo.3
pasuioy}
-neun

Ssed 0¥

asuods

-9y IdY
pa1oadx3

lie/ssed

J[JIE]
MOJY3 ‘Syuswalinbai
}99W j0U Op s|ielaq

UMOJY}

10419 ‘oseqejep
u13sixa ApeaJje
sjieyap Jasn panddns

Koy 91enuid

VSY pue sanjea
panddns Suisn paugis
pue pajeaJd uan ol
g2M NOST "aseqejep
03Ul papIasul ale
sjieyap 49sn panddng

pljeA Jou si ainjeudis
U940l g9M NOSI

WC_mmqu.hn_ JoNIoS

auou

/ pAomssed™pijeaul
:pJsomssed

‘auou / |lewa” pljeAul
:]lews ‘suou

/ aweu pljeAul :aweu

pJomssedpijea
:plomssed

‘|lewa pljeA :jlews
‘Dweu pljeA :aweu

pJjomssed™pijea
:p4somssed

‘llewa” pljeA :jlews
‘weu pljen :aweu

auou / pljeaul
:uoljeonyuayine

ey1eq1sa]

1S0d

ejep j|nu / pijeaul
U}M uoljes)siday

junodde
Sunsixa Apealje ‘eyep

1SOd PleA yum uoiesisisay

junodoe
3unsixa ou ‘eyep

1SOd pleA yum uonessidsy

139

poyIeI
dl1lH

uolesijuayine ou
/ PlleAul yum isanbay

uondiudsaqg

J93s1334/yine/

J9351334/yine/

19151394 /yne/

sw/yine/

julodpug |dV

€€

e

[4xé

al

199

Arthur Robertson

NEA

Cryptica Social Media Analysis Application

ssed

ssed

ssed

ssed

ssed

lie/ssed

Jo1i3
pasiuioyy
-neun
110}
d)dIpe
Mau
joal
‘%0 00¢

SMoau
101s17

Jo.3
00¥

jewoy
TOHO Ul
pauiny
-2J ejep
921id

asuods

-9y IdY
pa1oadx3

UMOIY3 J0JJD ‘pljenul
SI'snjeys ulwpe Jasn

aseqejep 0Ojul pauasul
SMaU Uay3 ‘paxdayd
SI'SN3e3s uiwpe Jasn

K1anb 3uisn aseqejep
WoJj payd3o) SMaN

pajpuey SI Yd1ym Jotid
ue SMoJy} |dy ddueulg

pauJn}al pue paydia}
S1J9)e]Jnoy ue jiun
awi} panddns wouy
e1ep 9IS Sy} WOy
pajjed |dy sdueulg

WC_mmqu.hn_ JoNIoS

auou / pljeaul
/49sn :uoljesijusyine

ulwpe :uonesniusayine

SUON

auou /awi} pljeAaul
:Pwin ‘suou
/ 49213 pijeaul sy

0025660791

12w 1aSNDLE a¥d1

ey1eq1sa]

1S0d

1S0d

139

139

139

poyIeI
dl1lH

pajedinuayineun /
Jasn e se A1jua apiye
SMau Mau e 3uijeal)

ulwpe pajednusayine
ue se Aiua pdije
SM3u Mau e 3uneal)

smau
Jo3s1) Sunpsanbay

ejep |jnu / plieAut yym
eyep AouanindoydAid
3unsanbay

elep plieAa yyim
eyep AoualiindoydAid
dunsanbay

uondiudsaqg

smau/

smau/

smau/

{INIL}/{43IN
DI1}/0ydA1d/

{INIL}/{43IA
D11}/03dAid/

julodpug |dV

€q

(4]

TS

(4%

T

al

200

Arthur Robertson

NEA

Cryptica Social Media Analysis Application

ssed

ssed

ssed

ssed

ssed

lie/ssed

M0 00¢

Jos3
punoy
10N 0¥

sjusw
-wod

101s17

Jou3
puno}
10N 0¥
apie
Inoqe
s|ielsp
114

asuods

-9y IdY
pa1oadx3

eyep palddns 3uisn
9]ge} SjUsWWOod Oul
paMasUl JUBWWO)

pauinial
3uiyjou ‘sseqerep
3y} Ul punoy aqglou
ued p1 Smau paijidads

juswajess urol Suisn
pauJn}al S;UsWIWIOD
pue aseqelep

9} WO} pa1d9)9s

SI p1 smau payjidads

pauJinial
3uiyjou ‘sseqeiep
33 Ul punoy aq jou
ued pI SMau paljdads
pauinial

pue aseqejep

3Y} Wolj pa3dd|as

SI pI SMau paijdads

WC_mmqu.hn_ JoNIoS

1USU0D JUBWWOD
2JUBWIWOD ‘ulwpe
/Jasn :uoljesnjuayine
‘PIplen :p!

P! pleaut :pi

Pl pleA :pi

P! pleaut :pi

P! pleA :pi

ey1eq1sa]

1S0d

139

139

139

139

poyIeI
dl1lH

Jasn pajedijuayine
ue se d)d1ue

pIjeA B UO JUSWIWO0D
Mau e duneal)

adiye
PlJEAUI UO S}USWIWIOD
Jo3s1) Sunisanbay

apIe
PI]eA UO S}USWIWO)D
jo3s1) Sunsanbay

ojul 3dIpe
@l 3unsixa uou /
pljeAul ue uisanbay

ojul a)die
al pijeA e 3unsanbay

uondiudsaqg

sjuswwo
>/{al}/smau/

Sjuswwo
>/{ai}/smau/

sjuswwo
d/{ai}/smau/

{ai}/smau/

{ai}/smau/

julodpug |dV

L

T

19

al

201

Arthur Robertson

NEA

Cryptica Social Media Analysis Application

ssed M0 00¢

Jo.3
paslioyy
-neun

Ssed oY

ssed M0 00¢

Jo.3
pasuioy}
-neun

Ssed 0¥

asuods

-9y IdY
pa1oadx3

lie/ssed

paddoip Juswwod
‘snyejs ulwpe

J0 9 01 paydayd
uonesnuayny

al

Joyine ay3 ydlew jou
S90p (| pue payaayd
uoniesnusyiny
aseqelep

wouy paddoup
JUBWWOD ‘gl Joyne
JUSWWOI 3y} Saydjew
33ey3 paxdasyd
uoniesnuayiny

UMOJY}
10413 ‘pljeaul aq
puNoj uoed1IUBYINY

WC_mmqu.hn_ JoNIoS

Pl 3USWIWOD ™ pljeA
‘prijuswwod
‘PIplleA :p! ‘ulwpe
:uoneonuayine

pI_IUSWWOd” pIjeA
:prjuswiwod

‘PIpljeA :pi

Joyjne juswwoduou
:uolesnuayine

pITIUSWIWOD ™ pljeA

PI IUBWIWIOD ‘pITpljeA
p1 4oyne uLWWOd
:uonesnuayine

JUUOD JUSWILIOD
2Juswwod ‘pljeaul

/ duou :uoleduayine
‘PrplieA :p!

ey1eq1sa]

31313d

313134

31313d

1S0d

poyIeI
dl1lH

JUBWIWIOD
slasn Jayjoue Suns)ap
ulwpe pajednuayiny

JUBWIWOD
slasn Jayjoue 3uns)ap
19sn pajedipuayiny

JUBWIWOD

umo J13y3 3unsjap
13sn pajednuayiny
1asn pajednpusyineun
ue se apIpe

pl]eA e uo JUSWWOD
Mau e 3uneas)d

uondiudsaqg

{
ar LNJWNWo
J}/siuswwo

>/{al}/smau/

{

al LINIWWo
J}/siuswwo

>/{al}/smau/

{

al LNIWWo
J}/siuswwo

>/{al}/smau/

Sjuswwo
>/{ai}/smau/

julodpug |dV

€8

V'L

al

202

Arthur Robertson

NEA

Cryptica Social Media Analysis Application

ssed

ssed

ssed

lie/ssed

Aue ji
‘w9l dul
-ydjew
JUUOd
aney
leyy
s9dIMe
1\4

Joai3
pasiuioyy
-neun
110}

aseqejep
ul syusW
-wod |y

asuods

-9y IdY
pa1oadx3

pauJn}aJ saLjud
3uiyojew Jje ‘Auanb
129)9s xa)dwod 3uisn
paydJeas aseqeie(

UMOJY}
10419 ‘snjejs uiwpe
JOU S| Uol3edIIUBYINY

anJ} = uiwpe
alaym aseqelep
W04} pa3I9)as

SJasn jje ‘uiwpe pijea
e Sl uoljedipuayny

WC_mmqu.hn_ JoNIoS

WLI9) (WIS} YdJieas

auou
/ Jasn :uonedniuayine

ulwpe uonesniuayine

ey1eq1sa]

1S0d

139

139

poyIeI
dl1lH

aseiyd paydads
e 10} 3sanbau youess

SJUBWWOD

J1e Sunsanbau

Jasn pajednjusyineun
JBEN)

SjUSWIWOD
J1e Sunsanbau
ulwpe pajeduayny

uondiudsaqg

yoJess/smau/ 10T

Sjuaw
wod/smau/

Sjusw
wod/smau/

julodpug |dV

6

16

al

203

Arthur Robertson

NEA

pauiny
-l
aseqejep

aseqelep wodj

204

WoJ} pauinidi pue pajdsd)as

sJasnjje sJasn |je ‘snieis ulwpe sl1asn jje Sunsanbai

ssed J0 3517 SIUOIIBDIIUBYINY UlWpe :uoiledijuayine 139 ulwpe pajednuayiny s1asn/ 1'CT
JoJi3
pasuoyl
-neun UMOIY} 101D S199M} 40} Sulydiesas
ssed TOY ‘pPlleAUl UOIIBDIJUBYINY BUOU :uoljedI3usayine 1SOd J9snh pajedijuayjeun ydJeas/tanimy/ '1T
Aue
J1 ‘syjuswi
-ndJe
3ul
-ydjew
IdVY pauiniaJ ‘punoy
JaRIM] synsaJ 3uiydlew
woJy Aue }| ‘syuswngie Jagwinu :3unod syuswngie

‘Oweulasn :1asn

Cryptica Social Media Analysis Application

punoj Aianb paydads 3uisn
S}99M} Payd.eas S |dY JoRIM}

pai10ads 3uiydjew

‘WD) (WI9Y Ydueas s199M} Joj Suiydieas

ssed NIV ‘PleAuoniediuayiny 4asn :uoledijuayine 1S0d Jasn pajednnuayiny ydieas/ionpimy/ 111
Jle4/ssed asuods 3u1ss900.1d JaAIDS e1eQ 1S9l POy uondudsag julodpui|dy dl
-9y IdY dl1lH
pa1oadx3

Arthur Robertson

NEA

Cryptica Social Media Analysis Application

ssed

ssed

ssed

ssed

lie/ssed

M0 00¢

s|ie1aq
JE
MaN

sjieyaq
Jasn

arJasn
M3N

asuods

-9y IdY
pa1oadx3

olqe}

9y} wouy paddoup
S149sn payydads
‘snyejs ulwpe
stuonesnuayiny

Sjieyap palddns mau

3y} yum aseqelep
3y} Ul payipow

S143sn ‘snjels ulwpe

S| uonesnuaYINY

aseqeiep sy} Woy

pauin}al pue pada)as
S119sn ‘snjels ujwpe

S| uoledUBYINY

ISIXD

KpeaJje jou ssop } i
aseqelep 0lul papasul
S143sn ‘snjejs ulwpe

S| uonednuaYINY

WC_mmqu.hn_ JoNIoS

pl Jasn pijea
:p! ‘ulwpe
:uoneonuayine

elEp Jasn”Mau

:Jasnpl Jasn pljea

p! ‘ulwpe
:uoneonusyine

pIJasn pijeA
p! ‘ulwpe
:uolyesnuayine

ejep Jasn_ mau
:19sn ‘ulwpe
:uoljeonyuayine

ey1eq1sa]

313134

1nd

139

1S0d

poyIeI
dl1lH

Jasn e 3unsjap

ulwpe pajednuayiny

ojul Jasn Suikjipow

uiwpe pajednuayIny

ojul Jasn unpsanbal
ulwpe pajediuayiny

JosSn mau wc_umw‘_u

ulwpe pajednuayiny

uondiudsaqg

{a1}/ssesn/ ¢€€1

{ai}/sresn/ et

{ai}/saesn/ T°€T

siesn/ 7T

julodpug |dV

al

205

Arthur Robertson

NEA

Cryptica Social Media Analysis Application

pauJnaJ aJe siasn
JO Jaqwinu ‘uorpuny

70S 21e32133e Junod sJasn ||e
$Jasn Jo duisn ‘smyeys uiwpe Jo 1unod e unsanbai
ssed JaquwinN SI UOIIBDIIUBYINY UIWpE :uoljedijusyine 139 ulwpe paediuayiny unod/siasn/ 19T

pauiniaJ pue pajdd)as

ale ujwpe ale sjunodoe
oym aseqelep wolj Jojensiuiwpe
sulwpe sJasn jje ‘sniels uiwpe Jo1s1) e Sunnsanbal
ssed Joisn SI UOIIeDIIUBYINY UlWpE :uoljedijuayine 139 ulwpe pajedipusayiny ulwpe/siasn/ T'GT

y3lqo NOST

e Se pauinial sisiyl

‘uto[Jauul uisn wouy

3Je SuUsWW0d 3y}

1ey3 s9)di1e ayy pue
SIUBWIWOD S,43sN 3y}

Sjusw }Jo1Sl] e pue ‘9)ge} Jasn
-Wo0) 9y} WO} uoljewoul

pue Jasn d1seq awos 9yoid
s|jie¥eq 129)3s 03 sunu A1and pI—Jasn™pijeA :pi s.Jasn e dunsanbai 910U
ssed J9SN "pa1edlUBYINE SIIaSN U3sN :uoijediusyine 139 Jasn pajeonnuayiny d/{qi}/ssesn/ 11
Jle4/ssed asuods 3u1ss900.1d JaAIDS e1eQ 1S9l POy uondudsag julodpui|dy dl
-9y IdV dllH
pa1oadx3

206

Arthur Robertson

Cryptica Social Media Analysis Application NEA

Evidence

I haveincluded evidence for all of the above tests. You can find the evidence by matching the ID
in the table with the corresponding test below. The evidence comes in two parts, the request
and response. The request is the data sent to the APl server, in the form of a HTTP request. The
response is what the server replies with. | have used the HTTP Testing tool Postman to test,
and the screenshots below are all from that. Some of the responses are long and as a result are
not all visible in the screenshots. Some of the requests also contain variables. {{baseUr1}}
refers to the URL that the APl server is accessible from. In my case it was running locally, so
the URLwas http://localhost:8000. [USER_TOKEN] and [ADMIN_TOKEN] refer to two
JSON Web Tokens that my server has created that can authenticate either a user or an admin.
In the case of these tests, it means that when either feature in the headers of the request, that
the user is authenticated.

1.1 Request

POST /api/auth/login HTTP/1.1
Host: {{baseUrl}}
Content-Type: application/json
Accept: application/json
Content-Length: 67

{

"email": "testingRemail.com",
"password": "Testingl23!"

Response

Body Headers (4) Status Code 200 OK

Pretty Raw Preview JSON v

1

2 "access_token": "eyJhbGci0iJSUzIANiIsInR5cCI6IkpXVCI9.
eyJzdWIi0iJOZXNOaW5nQGVtYWlsLmNvbSIsInBlemlpc3Npb25zIjoidXN1ciIsImV4cCI6MTYOO0Tg2MDY5My43NTIWODN9 .
FKxOVpY-4SkkiEA97FnmUOMi9210MGkdpNxbMwWpgMBRY7q-1qrYAJSNRRBAPOOt8XgR6 -1QmqYwtB73iWVz1ThEMICqS-TIisc8H1j5aby7UCYHNWRk7KOIRWXOcI2FvHajF
50yRjw01ix9REeGITWKD8BuULINX6aplgHg-auB1XF2VX2wWYTL2nJuK4PQiAWrUpusLSc5WMTney12pTHsLT6uleEhOowZ_Y45Bu6vwETQAdwCHWtISP5yu8dQhtelLk5I1fzzP
a1JjnCpJ8FvBvpk6LHIAZ5HIheYiSvpMk69QIxj6yDHEOE7fcqTadlYBqYUvt7Bb_80XBSCqweztxQ",

3 "token_type": "bearer"

4

1.2 Request

Arthur Robertson 207

Cryptica Social Media Analysis Application NEA
POST /api/auth/login HTTP/1.1
Host: {{baseUrl}}
Content-Type: application/json
Accept: application/json
Content-Length: 71
{
"email": "testing@email.com",
"password": "InvalidPassword"
}
Response
Body Headers (5) Status Code 401 Unauthorized
Pretty Raw Preview JSON v = m Q
1§ |
2 "detail": "Incorrect username or password"
3 |
1.3 Request
POST /api/auth/login HTTP/1.1
Host: {{baseUrl}}
Content-Type: application/json
Accept: application/json
Content-Length: 39
{
|lema-i'l_ll: llll’
"password": ""
}
Response
Body Headers (5) Status Code 401 Unauthorized
Pretty Raw Preview JSON ~ = m Q
i I
2 "detail": "Incorrect username or password"
3

2.1 Request

Arthur Robertson

208

Cryptica Social Media Analysis Application NEA

GET /api/auth/me HTTP/1.1

Host: {{baseUrl}}

Accept: application/json
Authorization: Bearer [USER_TOKEN]

Response

Body Headers (4)

Status Code 200 OK

Pretty Raw Preview JSON ~ = mQ

N
e
|

"status": 200

2.2 Request
GET /api/auth/me HTTP/1.1
Host: {{baseUrl}}
Accept: application/json

Response

Body Headers (5) Status Code 401 Unauthorized

Pretty Raw Preview JSON v =5 m Q
1 I
2 "detail": "Failed to validate credentials"

3 i

3.1 Request

POST /api/auth/register HTTP/1.1
Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Content-Length: 137

{

"email": "testingemail@aga.org.uk",
"password": "SecurePasswordl23!",

Arthur Robertson 209

Cryptica Social Media Analysis Application NEA
"first_name": "testing",
"last_name": "testing example"

}
Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v) m Q
{ I
2 "access_token": "eyJhbGci0iJSUzIINiIsInR5cCI6IkpXVCI9.

eyJzdWIi0iJOZXNOaW5nZWlhaWxAYXFhLm9yZy5layIsInBlcmlpc3Npb25zIjoidXNlciIsImVac

CI6MTYOOTEg2MTA30S440TMWNIF9 .

YgDy5nqjFpVLTB8CIOIZ9ckvXOFXxBToEBifDVZeOviIH53¢c7s781iNnkoApYXTBaEU7HBS_DQQ6N_
eiyS-yuRSteYGHNVTxSWARLq_052fGo51hsSW6Z9rC8PA44tDzZ9MezXsq-MOGtytgl TFSP5HSF2z3
0Z_1qpSGrLrPXNYYi0ENnQ2seSol3lyZnfmsfCW-5rTaaSxA4z6LOKzxKmgINAsk2xsRQbXGh5aGUkK
AC81_xuLVHB7wEUmHBKCOPLp8aK1lWmpI-BIMo1l@d3KxtVé6bsFuNkZp_wGgOWb3NsubQVcTz_Witpf

cmGMzMoCXdxrpo-BZSoJc9qZhFKf2uwOgA™",
3 "token_type": "bearer"

3.2 Request

POST /api/auth/register HTTP/1.1
Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Content-Length: 127

{

"email": "test@test.com",

"password": "SecurePasswordl23!",

"first_name": "testing",
"last_name": "testing example"

Response

Arthur Robertson

210

Cryptica Social Media Analysis Application NEA

Body Headers (5) Status Code 409 Conflict

Pretty Raw Preview JSON v = mQ
J I

2 "detail": "Account already exists"
3 B i

3.3 Request

POST /api/auth/register HTTP/1.1
Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Content-Length: 74

{
llema-i'Lll: Illl,
"paSSWOFd": Illl,
"first_name": "",
"last_name": ""
}
Response

Body Headers (4) Status Code 400 Bad Request

Pretty Raw Preview JSON v = mQ
14 i
2 "detail"”: "Invalid Password"

3 I

4.1 Request
GET /api/crypto/BTCUSDT/1633046400 HTTP/1.1
Host: {{baseUrl}}

Accept: application/json

Response

Arthur Robertson 211

Cryptica Social Media Analysis Application NEA
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v =) m Q
1 [0 "
2 [
3 1633048200000,
4 "43872.99000000",
5 "43913.21000000",
6 "43870.12000000",
7 "43904.47000000",
8 "29.68011000",
9 1633048259999,
10 "1302600.95548760",
11 844,
12 "16.15721000",
13 "709073.51545090",
14 IIOII
|
4.2 Request
GET /api/crypto/invalid/1633046400 HTTP/1.1
Host: {{baseUrl}}
Accept: application/json
Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v =) m Q
1 [I
2 "status_code": 400,
3 "detail": "Invalid Ticker",
4 "headers": null
5§ [

5.1 Request
GET /api/news/ HTTP/1.1

Host: {{baseUrl}}
Accept: application/json

Response

Arthur Robertson

212

Cryptica Social Media Analysis Application NEA

Body Headers (4) Status Code 200 OK

Pretty Raw Preview JSON ~ = m Q
1 "
2 1
3 "id": 785,
4 "title": "Crypto exchange Binance wins dismissal of U.S. lawsuit over

digital token sales - Reuters.com",

5 "publication": "Reuters",
6 "imageurl": "https://www.reuters.com/resizer/o_hXSPxMRI1Y15gFdDhX50PDxhQ=/

728x381/smart/filters:quality(80)/cloudfront-us-east-2.images.
arcpublishing.com/reuters/TNIPSXZUUVIZPAM3V4QLICSXWI. jpg",

7 "description": "A federal judge on Thursday dismissed a lawsuit accusing
Binance, the world's largest cryptocurrency exchange by trading volume,
of violating U.S. securities laws by selling unregistered tokens and
failing to register as an exchange or broker-dealer.",

8 "date": "2022-03-31T19:07:00Z2"

5.2 Request

POST /api/news HTTP/1.1

Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]
Content-Length: 185

{
"publication": "test",
"author": "test",
Ul Magsiad
"description": "test",
"content": '"test",
|lur'Lll: lltestll’
"imageUrl": "test",
"date": "test"

}

Response

Arthur Robertson 213

Cryptica Social Media Analysis Application NEA

Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v = m Q
1 I
2 "id": 813
3 [B

5.3 Request

POST /api/news HTTP/1.1

Host: {{baseUrl}}
Content-Type: application/json
Accept: application/json
Content-Length: 185

{
"publication": "test",
"author": "test",
"title": "test",
"description'": "test",
"content": "test",
|lur1|l . lltestll
°)
"imageUrl": "test",
"date": "test"
}
Response
Body Headers (4) Status Code 403 Forbidden
Pretty Raw Preview JSON v =) m Q
1 [i
2 "detail": "The user doesn't have enough privileges"
3 [i

6.1 Request

GET /api/news/100 HTTP/1.1
Host: {{baseUrl}}
Accept: application/json

Arthur Robertson 214

Cryptica Social Media Analysis Application NEA

Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v = m Q
1 I
2 "title": "Solana, rival of Ethereum, is already the seventh most valuable
cryptocurrency on the market, surpassed Dogecoin!",
3 "content": "This Tuesday, the 'altcoin' Solana (SOL) became the seventh
cryptocurrency with the highest market capitalization above Dogecoin , Elon
Musk's favorite. This currency, rival of Ethereum , has grown m.. [+4452
chars]",
"author": "Mairem Del Rio",
5 "publication": "Entrepreneur",
6 "imageurl": "https://assets.entrepreneur.com/content/3x2/2000/
1631057048-Sep8Solanacriptomonedaaltcoin.jpg",
7 "url": "https://www.entrepreneuxr.com/article/384229",
8 "date": "2021-09-08T11:00:00Z2"

6.2 Request
GET /api/news/100000 HTTP/1.1
Host: {{baseUrl}}

Accept: application/json

Response

Body Headers (4) Status Code 200 OK

Pretty Raw Preview JSON v = mQ

1 null

7.1 Request
GET /api/news/814/comments HTTP/1.1

Host: {{baseUrl}}
Accept: application/json

Response

Arthur Robertson 215

Cryptica Social Media Analysis Application NEA
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v = m Q

1 r i
2 1
3 "id": 31,
4 "user_id": 92,
5 "news_id": 814,
6 "content": "testing comment",
7 "date": "2022-04-06 16:03:44"
8 1
9 [i

7.2 Request
GET /api/news/999/comments HTTP/1.1
Host: {{baseUrl}}
Accept: application/json

Response

Body Headers (4) Status Code 200 OK

Pretty Raw Preview JSON v) m Q
1 null

7.3 Request

POST /api/news/814/comments HTTP/1.1
Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Authorization: Bearer [USER_TOKEN]
Content-Length: 36

{
"content": "testing comment"
}
Response
Arthur Robertson

216

Cryptica Social Media Analysis Application NEA

Body Headers (4) Status Code 200 OK

Pretty Raw Preview JSON + - mQ
1 i
2 "user_id": 92,
3 "news_id": 814,
4 "date": "2022-04-06 16:03:44",
5 "content": "testing comment"
6 [i

7.4 Request

POST /api/news/814/comments HTTP/1.1
Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Content-Length: 36

{
"content": "testing comment"
}
Response
Body Headers (5) Status Code 401 Unauthorized
Pretty Raw Preview JSON ~ = m Q
{ i
i . "detail": "Failed to validate credentials" I

8.1 Request

DELETE /api/news/814/comments/31 HTTP/1.1
Host: {{baseUrl}}

Accept: application/json

Authorization: Bearer [USER_TOKEN]

Response

Arthur Robertson 217

Cryptica Social Media Analysis Application NEA
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v 5 [i Q
1 3
8.2 Request
DELETE /api/news/814/comments/33 HTTP/1.1
Host: {{baseUrl}}
Accept: application/json
Authorization: Bearer [USER_TOKEN]
Response
Body Headers (5) Status Code 401 Unauthorized
Pretty Raw Preview JSON v = m Q
10 I
2 "detail": "Unauthorized"
3

8.3 Request

DELETE /api/news/814/comments/32 HTTP/1.1

Host: {{baseUrl}}
Accept: application/json

Authorization: Bearer [ADMIN_TOKEN]

Response

Body Headers (4)

Pretty Raw Preview JSON v =

1 32

9.1 Request

Status Code

200 OK

m Q

Arthur Robertson

218

Cryptica Social Media Analysis Application NEA
GET /api/news/comments/ HTTP/1.1
Host: {{baseUrl}}
Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]
Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v 5 mQ
1 -
2 1
3 "id": 33,
4 "user_id": 94,
5 "news_id": 814,
6 "content": "testing comment",
7 "date": "2022-04-06 16:06:55"
8 t,
9 {
10 "id": 30,
11 "user_id": 90,
12 "news_id": 785,
13 "content": "",
14 "date": "2022-04-02 17:43:40" .
9.2 Request
GET /api/news/comments/ HTTP/1.1
Host: {{baseUrl}}
Accept: application/json
Response
Body Headers (5) Status Code 401 Unauthorized
Pretty Raw Preview JSON v 5 [i Q
{ [
2 "detail": "Failed to validate credentials"
3 I

10.1 Request

Arthur Robertson

219

Cryptica Social Media Analysis Application NEA

POST /api/news/search HTTP/1.1
Host: {{baseUrl}}
Content-Type: application/json
Accept: application/json
Content-Length: 27

{
"phrase": "bitcoin"
}
Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v — m Q

1 "

2 {

3 "title": "Bitcoin holds ground after touching highest this year - Reuters",

4 "imageurl": "https://www.reuters.com/resizer/aZbDThlfA7PvYaZbh68U0gy-DZRk=/
1200x628/smart/filters:quality(80) /cloudfront-us-east-2.images.
arcpublishing.com/reuters/CVYNYPY5GUFPSXFBBXXBK6YLCAU. jpg",

5 "publication": "Reuters",

6 'id": 780,

7 "date": "2022-03-29T09:06:00Z"

8 I

9 {

10 "title": "Cryptoverse: Buoyant bitcoin helps market cruise past $2 trillion
- Reuters",
11 "imageurl": "https://www.reuters.com/resizer/hQUFyg89hsElzlhGEfkPIvaoHxhY=/

11.1 Request

GET /api/twitter/search?coin=Bitcoin&username=elonmusk HTTP/1.1

Host:

{{baseUrl}}

Accept: application/json
Authorization: Bearer [USER_TOKEN]

Response

Arthur Robertson 220

Cryptica Social Media Analysis Application NEA

Body Headers (4) Status Code 200 OK

Pretty Raw Preview JSON ~ = m Q
1 [u
2 [
3 {

4 "id": 1503222294277197829,
5 "id_str": "1503222294277197829",
6 "conversation_id": "1503123611988766730",
7 "datetime": "2022-03-14 04:11:38 GMT",
8 "datestamp": "2022-03-14",
9 "timestamp": "04:11:38",

10 "user_id": 44196397,

11 "user_id_str": "44196397",

12 "username": "elonmusk",

13 "name": "Elon Musk",

14 "place": "",

11.2 Request

GET /api/twitter/search?coin=Bitcoin&username=elonmusk HTTP/1.1
Host: {{baseUrl}}
Accept: application/json

Response
Body Headers (5) Status Code 401 Unauthorized
Pretty Raw Preview JSON v 5 fi Q
1§ I
g] "detail": "Failed to validate credentials" I

12.1 Request

GET /api/users/ HTTP/1.1

Host: {{baseUrl}}

Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]

Response

Arthur Robertson 221

Cryptica Social Media Analysis Application

NEA

Body

Headers (4) Status Code

Pretty Raw Preview JSON v =5

N ook wN e

O 0

10
11
12
13

12.2

"id": 1,

"first_name": "Arthuz",

"last_name": "Robertson",

"email": "arthurrobertson2004@gmail.com",

"hashed_password": "$argon2id$v=19$m=102400,t=2,
p=8%cq5VSundGAMwRggh5FzrvQ$8EEX2CM+FDISFUWUNDY2A" ,

"admin": false

Ilidll. 2
"first_name": "test",
"last_name": "test",

Request

POST /api/users/ HTTP/1.1

Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]
Content-Length: 158

{
"email": "testingemail2@aga.org.uk",
"password": "SecurePasswordl23!",
"first_name": "testing",
"last_name": "testing example",
"admin": "false"

Response

200 OK

m Q

Arthur Robertson

222

Cryptica Social Media Analysis Application

NEA

Body Headers (4) Status Code

Pretty Raw Preview JSON v =5

"email": "testingemail2@aga.org.uk",
"admin": false,

"first_name": "testing",
"last_name": "testing example",
"passwoxrd": "SecurePasswordl23!"

N ok WM e

13.1 Request

GET /api/users/10 HTTP/1.1

Host: {{baseUrl}}

Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]

Response

Body Headers (4) Status Code

Pretty Raw Preview JSON =

"id": 10,

"first name": "Demo",

"last_name": "Account",

"email": "demo@arthurr.co.uk",

"hashed_password": "$argon2id$v=19%$m=102400,t=2,
p=8$FIIwRihFiFFKifFeCOEIYQ$TIWSXi2xmyz2aqgWk2qIGw",

"admin": false

oA WN R

~J

13.2 Request

PUT /api/users/10 HTTP/1.1

Host: {{baseUrl}}

Content-Type: application/json
Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]
Content-Length: 178

200 OK

200 OK

mQ

mQ

Arthur Robertson

223

Cryptica Social Media Analysis Application

NEA

{
"password": "testing",
"email": "newemail@email.com",
"new_password": "newpassword",
"admin": false,
"first_name": "labore aute dolor",
"last_name": "sunt labore"
}
Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON ~ = m Q
1 i
2 "password": "testing",
3 "email": "newemail@email.com",
4 "new_password": "newpasswoxd",
5 "admin": false,
6 "first_name": "labore aute dolor",
7 "last_name": "sunt laboxe"
g R I
13.3 Request
DELETE /api/users/10 HTTP/1.1
Host: {{baseUrl}}
Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]
Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v = m Q
1 10
14.1 Request
GET /api/users/94/profile HTTP/1.1
Arthur Robertson 224

Cryptica Social Media Analysis Application NEA

Host: {{baseUrl}}
Accept: application/json
Authorization: Bearer [USER_TOKEN]

Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v = m Q
19
2 "id": 94,
3 "first_name": "Admin",
4 "last_name": "Account",
5 "comments": [
6 %
7 "id": 33,
8 "news_id": 814, N
9 “content": "testing comment",
10 "date": "2022-04-06 16:06:55",
11 "title": "test"
12 I3
13]
14 t

15.1 Request

GET /api/users/admins HTTP/1.1
Host: {{baseUrl}}

Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]

Response

Arthur Robertson 225

Cryptica Social Media Analysis Application NEA
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON v = m Q
N .
2 i
3 "id": 6,
4 "first_name": "Admin",
5 "last_name": "Account",
6 "email": "admin@admin.com",
7 "hashed_password": "$argon2id$v=19$m=102400,t=2,
p=8$nFPKuVdgLeU859zh29s7Bw$dk27NUsUNa9RrqiJOuyALA",
8 "admin": true
9 }l
10 i
11 "id": 52,
12 "first_name": "Axrthux",
13 "last_name": "Robertson",
.
15.2 Request
GET /api/users/count HTTP/1.1
Host: {{baseUrl}}
Accept: application/json
Authorization: Bearer [ADMIN_TOKEN]
Response
Body Headers (4) Status Code 200 OK
Pretty Raw Preview JSON ~ = m Q
. .
2 1
3 "count": 62
4 t
5

XSS and SQL Injection Testing

| have tested a selection of routes explicitly for XSS and SQL injection, in addition to further

tests.

Arthur Robertson

226

Cryptica Social Media Analysis Application

NEA

Logging In | tested the login endpoint extensively with several SQL injection strings. All of

them failed to work.

Request

ZEGN Raw Hex \n =

1 POST /api/auth/login HTTP/1.1
2 Host: cryptica.herokuapp.com
3 Content-Length: 68

4 Sec-Ch-Ua: " Not A;Brand";v="99", "Chromium";v="99", "Google Chrome";v="99"

5 Accept: application/json, text/plain, */x
6 Content-Type: application/json
7 Sec—Ch-Ua-Mobile: 70

8 User-Agent: Mozilla/5.@ (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.7113.93 Safari/537.36

9 Sec—Ch-Ua-Platform: "mac0S"

0 Origin: https://cryptica.arthurr.co.uk
1 Sec-Fetch-Site: cross-site

2 Sec-Fetch-Mode: cors

3 Sec-Fetch-Dest: empty

Response

A Raw Hex FRender o =

1 HTTP/1.1 401 Unauthorized
2 Connection: close
3 Date: Sat, 02 Apr 2022 17:37:12 GMT
4 Server: uvicorn
5 Www-Authenticate: Bearer
6 Content-Length: 43
7 Content-Type: application/json
8 Access-Control-Allow-Origin: https://cryptica.arthurr.co.uk
9 Vary: Origin
10 Via: 1.1 vegur
11
12 {
"detail":"Incorrect username or password"

4 Referer: https://cryptica.arthurr.co.uk/
5 Accept-Encoding: gzip, deflate
6 Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
7 Connection: close
8
94
“email":"';DROP USERS;--",
“password":"";SELECT % FROM USERS;"
}

Figure 50: Screenshot of SQL Injection test

Registering | attempted to register with an account that included a common SQL and XSS
injection string. | was able to create the account, however the SQL and XSS was not executed.
As you can see below, the <script>alert()</script> is not embedded into the page,
meaning that the application has successfully protected against injection.

CRYPTICA NEWS TRENDS COINS ANALYSIS

BITCOIN $46337 CHAINLINK $17.45 ALGORAND $094799 ~ ETHEREUM $34795 UNISWAP $1176 POLKADOT $2306 LITECOIN $12638 DOGECOIN $0.141106 TERRA-LUNA $11429 CAR(}

~ 0.3% ~1.5% ~1.4% ~ 5.3% ~1.6% ~ 0.9% ~ 6.8%

Welcome back, <script>alert()</script> ;SELECT * FROM USERS;. .’

Zmail: injection@test.com

CRYPTICA

Copyright @ 2021 GoTtor T

Figure 51: Screenshot of XSS Injection test

Arthur Robertson 227

Cryptica Social Media Analysis Application NEA

Posting Comments | tried inputting a variety of injection inputs to attempt to inject SQL or
JavaScript into my page. All of them failed, and the SQL and XSS injection protection proved
successful.

Add a new comment

Type Your Comment

Comments must abide by our rules. Post Comment

<script>alert()</script> ;SELECT * FROM USERS;

2022-04-02 17:25:25
"; SELECT * FROM USERS;--

<script>alert()</script> ;SELECT * FROM USERS;

2022-04-02 17:25:09
" OR WHERE 1=1,

<script>alert()</script> ;SELECT * FROM USERS;

2022-04-02 17:24:49

"><script>alert()</script>

Figure 52: Screenshot of XSS Injection test

EVALUATION

OBJECTIVE COMPLETION

When | worked through the implementation and design phase of my project, | kept my objec-
tives in mind at all time. This allowed me to complete almost all of them to a successful level.

Arthur Robertson 228

Cryptica Social Media Analysis Application

NEA

You can see the table below where | have

Objective

There should be a publicly accessible web application that
allows the client to access the etc

There should be two main components to the web application,
a front end client and a back end API. The front end client
should interact with the APl and should be what the user
interacts with. The APl should handle all the
fetching/processing of data, as well as any other functionality
such as database management with CRUD.

The API should be capable of securely authentication users for
the front end app. My client has specified that he would like
anyone to be able to login and register for an account, so that
he can share the application with his like-minded friends.
Therefore, the APl should be capable of handling multiple
concurrent users having accounts, and should be able to
authenticate and distinguish between them.

The API should interact with the front end client application to
ensure that users remain authenticated between sessions.
Users should be able to login and then have to not enter their
password again for a reasonable amount of time. This could be
done through a method such as sessions, or cookie token
generation.

The RSA algorithm should be used to sign the JSON Web Tokens.

To do this, | will need to have an RSA key. Part of the program
should be able to create RSA keys for use in this functionality.

The users data and passwords should securely be stored in a
database. A secure, modern password hashing algorithm
should be used, that uses hash salting to protect against
attacks.

Status

Success, website is
publicly accessible.

Success, there is a separate
APl server and Client
application.

Success, there is login and
registration functionality
implemented. Support for
multiple accounts.

Success, the client
application makes
requests to the API
automatically. The API
generates a JSON Web
Token for authentication
which is stored in the
user’s cookies.

Success, a valid and secure
RSA Key is generated and
used in the program.

Success, the Argon2
password hashing
algorithm has been used,
which uses salting.

Arthur Robertson

229

Cryptica Social Media Analysis Application

NEA

Objective

The API should be capable of fetching and processing a
specified users tweets from Twitter’s API. It should be able to
perform sentiment analysis on the tweet’s content, and return
the information to the user.

The API should have a database table that stores a collection of
recent relevant news articles. The frontend client should then
be able to display these articles for easy access. The news
articles should ideally come from a variety of sources through
web scraping. Only a brief excerpt of the article needs to be
stored and displayed - to read the full article the users should
be directed to the original site. Alternatively, the news articles
should be fetched from an existing third party API that offers a
service.

There should be a page that displays a list of the top 50 coins by
market cap. It should display live data showing the price and
other statistics about the coins. You should be able to click on
any of the coins and it should take you to another page,
showing further information about the coins performance. This
should include a graph of the coins performance over time, and
a brief description of the coin. In addition, on the specific coin
page it should show a list of relevant articles stored in the
database relating to the coin. If no such articles are found, it
should not display any.

Logged in users should be able to comment on any of the news
articles, and anyone should be able to view said comments.
Admin accounts should be able to delete any users comments,
and users should be able to delete their own comments.

Status

Success, the APl is capable
of fetching tweets and the
client successfully displays
them.

Partial Success, thereis a
database table containing
hundreds of fetched news
stories from an API.
Building a website scraper
for multiple different news
sites was not feasible. The
articles are successfully
displayed to the user.

Success, there is a coins
page that displays live
cryptocurrency price data.
Users can click and visit a
page about a specific coin,
and see related news
articles.

Success, the APl is capable
of checking if a user is
authenticated. Only
logged in users can
comment. In addition,
users can delete their own
comments, and admin
accounts can delete any
users comments.

Arthur Robertson

230

Cryptica Social Media Analysis Application

NEA

Objective

There should be a basic profile functionality. Users should be
able to view a users profile, and view information such as all
their historic comments on articles.

The application should be secure against malicious parties. It
should not be vulnerable to common flaws such as SQL or XSS
(cross site scripting) injection, and users should not be able to
bypass authentication methods implemented, e.g. viewing
pages that are behind an authentication wall.

The application should contain analysis page for users tweets,
that allows someone to input a users Twitter username. Then,
they should be able to view a list of tweets, and should be able
to see information on how the tweet has impacted the
cryptocurrency market. It should display a candlestick graph
that displays the price of the relevant cryptocurrency before
and after the tweet. This page should also show the predicted
sentiment of the tweet - whether the tweets content is positive
or negative.

The analysis page should also offer some basic analysis on the
user’s Twitter account as a whole. It should be able to produce
a heat map of the time the user is typically active on Twitter,
based on the time the user has tweeted previously. It should
also display what device the user uses in the form of a pie chart,
for example if the user is tweeting from an iPhone or from a
computer.

Status

Success, users can click on
each others names to view
a profile containing all a
users comments.

Success, in the testing
phase | performed checks
for SQL and XSS injection
against the API. Users are
also not able to bypass the
authentication wall.

Success, the tweet analysis
page successfully displays
the information required.

Success, the user analysis
page successfully displays
the information required.

Arthur Robertson

231

Cryptica Social Media Analysis Application

NEA

Objective

The tweets analysis page should be able to perform some basic
sentiment analysis on the user’s tweets contents. It should
attempt to estimate whether a tweet is positive or negative, and
this should then be displayed to the user. For this, a neural
network should be implemented using a Python deep learning
library such as TensorFlow. The neural network should aim to
have an accuracy of around 75%+. This objective is ambitious
and primarily an extension that | should complete if | have
enough time. Failing that, it should use an existing third party
API for analysing sentiment, rather than creating my own
sentiment model.

The website should be fast to respond. This can be measured
using Google’s Lighthouse page score metrics, which is a service
that returns a value on how fast the page performs. | want to
aim for a score of 90-100, which is considered ‘excellent’.

FEEDBACK FROM CLIENT

Status

Success, the APl returns a
value for sentiment based
on the response from the
model. The model has an
accuracy of approximately
85%, as evaluated by the
test function.

Success, the page score is
above 90 as seen in the
testing phase.

The feedback from my client was all positive. They expressed their appreciation of all their
requests being implemented, and asked for no additional changes at this time.

POSSIBLE EXTENSIONS

The application has capabilities to be developed further if required by my client. There are

several different extensions that could be implemented:

+ As mentioned in the design phase, there are several additional security measures that

could be implemented. One that | would recommend to be completed as a priority is

some form of multi-factor authentication to offer an additional layer of protection to

the applications users.

- This would be complicated to implement, as would involve partially recreating

the authentication flow. Measures such as email and SMS authentication would

Arthur Robertson

232

Cryptica Social Media Analysis Application NEA

likely require the use of a third party API, which would likely cost money. Whilst
the complexity and difficulty of this extension is high, itis of quite high importance
so should ideally be implemented as soon as feasible.

« The social aspect of the application could be developed further. Additional functionality
such as the ability for users to post on a forum could be added.

- This would simply involve creating a few more API routes that take advantage of
the database class. This should not take too long to implement.

« The program could be expanded to be able to analyse stocks and other investments
outside of cryptocurrencies.

- The main challenge prevention an expansion to other commodities such as stocks,
is the lack of freely available price data. If there was a budget and a subscription
to a paid stock data APl was purchases, this would be fairly easy to implement.
However, it would be difficult to implement without a cost.

« The administration utilities could be expanded. Additionally functionality such as the
ability to ban and delete users accounts directly from the application could be added.

- This would require the creation of several new CRUD routes, which should be fairly
easy to implement by making use of the existing classes.

« Further logging and analytics could be implemented. The application could integrate
with Google Analytics or any other analytic tool to provide information about the demo-
graphic and quantity of users using the application.

- This would be fairly easy to implement - to add Google Analytics to the program it
would just require the provided analytics JavaScript tracking code to be injected
to the head section of each page.

« A mobile application could be developed for iPhone and Android. The backend API func-
tionality would not need to be changed for this, it would simply require the development
of a mobile client.

- This would be fairly easy to implement. There are many frameworks now such as
React Native, that allow the easy conversion of websites to mobile applications.

« The random number generator in the RSA key generation could be upgraded to use a
CSPRNG (Cryptographically-secure Pseudorandom number generator)

Arthur Robertson 233

Cryptica Social Media Analysis Application NEA

- This would be complex to implement, but should be considered very important for
any program of enterprise level security. The default random number generator is
not “true random”, which in some rare situations make it vulnerable to attacks.

Arthur Robertson 234

	ANALYSIS
	DESCRIPTION OF PROJECT
	BACKGROUND ANALYSIS
	INTERVIEW WITH CLIENT
	CURRENT SYSTEM
	PROPOSED SYSTEM
	OBJECTIVES
	OBJECTIVES COMPLEXITY AND LIMITATIONS
	Security
	API Data Resolution
	Neural Networks
	User Interface Design
	News Article Scraping

	AUTHENTICATION
	HTTP Basic Authentication
	HTTP Digest Authentication
	Session Based Authentication
	Token Based Authentication
	OAuth
	Conclusion

	USER IDENTIFICATION
	TECHNICAL SOLUTIONS
	Next.js
	FastAPI
	TensorFlow and Neural Networks
	Twint
	Binance API
	Argon2
	PostgreSQL
	TailwindCSS

	DESIGN
	OVERALL DESIGN
	FRONTEND PAGES
	API ROUTES
	INPUT PROCESS STORAGE OUTPUT CHART
	FORM STRUCTURE
	Login Form
	Registration Form

	DATA DICTIONARY
	ENTITY RELATIONSHIP DIAGRAM
	SQL QUERIES PLAN
	CLASS DIAGRAMS
	USER INTERFACE
	COMMON SECURITY VULNERABILITIES AND MITIGATION
	SQL Injection
	Cross Site Scripting
	Broken Access Control

	SECURITY MEASURES
	JSON Web Tokens and RSA
	JWT
	Authentication Walls
	API Server Security
	Testing Phase
	Additional Possible Measures

	BACKUPS
	SENTIMENT ANALYSIS
	Algorithm
	Dataset
	Training
	Exporting

	SERVER HARDWARE
	Client Frontend
	API Server and Database

	ALGORITHM DESIGN
	Sentiment Analysis
	Authentication
	RSA (Rivest–Shamir–Adleman) Key Generator
	Base64

	TEST PLAN

	IMPLEMENTATION
	TABLE OF FILES
	ADVANCED TECHNIQUES
	ANNOTATED PROGRAM FILES
	api/main.py
	api/api/auth.py
	api/api/crypto.py
	api/api/news.py
	api/api/twitter.py
	api/api/users.py
	api/core/auth.py
	api/core/binance.py
	api/core/security.py
	api/db/crud.py
	api/db/schemas.py
	api/utils/base64.py
	api/utils/sentiment.py
	server/rsa/keygen.py
	server/news/update.py
	server/sentiment/train.py
	client/pages/account/index.js
	client/pages/tweet-analysis/index.js
	client/pages/coin/index.js
	client/page/coin/[id].js
	client/page/account-analysis/index.js
	client/pages/login/index.js
	client/page/register/index.js
	client/pages/news/index.js
	client/pages/news/[id].js
	client/pages/_app.js
	client/services/auth.js
	component/comments.js
	component/loading.js
	component/layout/layout.js
	component/layout/navbar/ticker.js
	component/layout/account.js
	component/coin/graph.js
	component/analysis/tweet.js
	components/analysis/search.js
	components/analysis/ohcl.js

	TESTING
	CLIENT APPLICATION TESTING
	SERVER CODE TESTING
	RSA Testing
	Miller_Rabin Function Testing
	Sentiment Analysis Model Testing
	JSON Web Token
	Base64

	API TESTING
	Evidence
	XSS and SQL Injection Testing

	EVALUATION
	OBJECTIVE COMPLETION
	FEEDBACK FROM CLIENT
	POSSIBLE EXTENSIONS

